Abtailung Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, Porstfach 4469, D-4500, Osnabrück, Germany, FRG.
Photosynth Res. 1986 Jan;9(1-2):197-210. doi: 10.1007/BF00029744.
Photosynthetic water oxidation proceeds by a four-step sequence of one-electron oxidations which is formally described by the transitions S0 → S1, S1 → S2, S2 → S3, S3 → (S4) → S0. State S1 is most stable in the dark. Oxygen is released during S3 → (S4) → S0. Hydroxylamine and hydrazine interact with S1. They cause a two-digit shift in the oxidation sequence as observed from the dark equilibrium, i.e. from S1 → S2 : S2 → S3 : S3 → (S4) → S0 : S0 → S1 :... in the absence of the agents, to S1 () → S0 : S0 → S1 : S1 → S2 : S2 → S3 :... in the presence of hydroxylamine or hydrazine.We measured the concentration dependence of this two-digit shift via the pattern of proton release which is associated with water oxidation. At saturating concentrations hydroxylamine and hydrazine shift the proton-release pattern from OH(+)(S1 → S2) : 1H(+)(S2 → S3) : 2H(S3 → S0) : 1H(+)(S0 → S1) :... to 2H(+)(S1 () → S0) : 1H(+)(S0 → S1) : OH(+)(S1 → S2) : 1H(+)(S2 → S3) : 2H(+)(S3 → S0) :... The 2H(+) were released upon the first excitation with a half-rise time of 3.1 ms, both with hydroxylamine and withydrazine. The concentration dependence of the shift was rather steep with an apparent Hill coefficient at half saturation of 2.43 with hydroxylamien (Förster and Junge (1985) FEBS Lett. 186, 53-57) and 1.48 with hydrazine. The concentration dependence could be explained by cooperative binding of n≥3 molecules of hydroxylamine and of n≥2 molecules of hydrazine, respectively. Tentatively, we explain the interaction of hydroxylamine and hydrazine with the water-oxidizing complex (WOC) as follows: Two bridging ligands, possible Cl(-) or OH(-), which normally connect two Mn nuclei, can be substituted by either 4 molecules of hydroxylamine or 2 molecules of hydrazine when the WOC resides in state S1.
光合作用的水氧化通过一个四步的单电子氧化序列进行,该序列由 S0 → S1、S1 → S2、S2 → S3、S3 → (S4) → S0 的跃迁正式描述。在黑暗中,S1 态最稳定。在 S3 → (S4) → S0 期间释放氧气。羟胺和肼与 S1 相互作用。它们导致从黑暗平衡观察到的氧化序列的两位数字移位,即从 S1 → S2:S2 → S3:S3 → (S4) → S0:S0 → S1:…在没有这些试剂的情况下,到 S1()→S0:S0→S1:S1→S2:S2→S3:…在存在羟胺或肼的情况下。我们通过与水氧化相关的质子释放模式测量了这种两位数字移位的浓度依赖性。在饱和浓度下,羟胺和肼将质子释放模式从 OH+(S1→S2):1H+(S2→S3):2H+(S3→S0):1H+(S0→S1):…转移到 2H+(S1()→S0):1H+(S0→S1):OH+(S1→S2):1H+(S2→S3):2H+(S3→S0):…第一个激发时释放出 2H+,半上升时间为 3.1ms,羟胺和肼都有。移位的浓度依赖性相当陡峭,半饱和时羟胺的表观希尔系数为 2.43(福斯特和容格 (1985) FEBS Lett. 186, 53-57),肼为 1.48。浓度依赖性可以通过羟胺和肼的 n≥3 分子和 n≥2 分子的协同结合来解释。我们暂时将羟胺和肼与水氧化复合物 (WOC) 的相互作用解释如下:当 WOC 处于 S1 态时,两个桥连配体,可能是 Cl-或 OH-,通常将两个 Mn 核连接起来,可以被 4 个羟胺分子或 2 个肼分子取代。