Ponec M, Kempenaar J, Boonstra J
Department of Dermatology, University Hospital, Leiden, The Netherlands.
Biochim Biophys Acta. 1987 Oct 17;921(3):512-21. doi: 10.1016/0005-2760(87)90079-8.
Cultured keratinocytes and squamous carcinoma cells provide a useful model system for studying the processes involved in the regulation of differentiation, as the differentiation capacity of the cells can be modulated experimentally by changing the extracellular calcium concentration. Furthermore, the squamous carcinoma cell lines exhibit a defect in their differentiation capacity which they express to different extents. In this paper, the effect of external lipoproteins has been studied on lipid synthesis in normal keratinocytes and three squamous carcinoma cell (SCC) lines which showed a decreasing capacity to differentiate in the order of normal keratinocytes greater than SCC-12F2 greater than SCC-15 greater than SCC-4. The ability of the cells to form cornified envelopes was taken as a measure of differentiation capacity. The rate of total lipid synthesis as well as the phospholipid-neutral lipid ratio decreased in the order SCC-4 greater than SCC-15 greater than SCC-12F2 greater than or equal to normal keratinocytes, clearly correlating with the differentiation capacity of the cells. Because of the high rate of phospholipid synthesis and the low rate of ceramide synthesis, it is concluded that, under these in vitro conditions used, the maturation of keratinocytes proceeds to a lesser extent than that seen under in vivo conditions. In proliferating cells, in which the low-density lipoprotein (LDL) receptor is operative to a high extent, the rate of lipogenesis, especially that of neutral lipids, responded dramatically to changes of extracellular lipoprotein concentration. In the presence of lipoproteins a marked decrease of cholesterol and triacylglycerol synthesis and an increase of cholesterol ester synthesis has been observed. On the other hand, in differentiating cells lipogenesis appeared to be independent of extracellular lipoproteins, due to the absence of the LDL uptake mechanism, the only exception being the synthesis of triacylglycerols, the rate of which could be modulated to a certain extent by extracellular lipoproteins. The results presented here demonstrate a close inverse relationship between the regulation of lipogenesis by extracellular lipoproteins and the ability of the cells to differentiate.