实用并行成像压缩感知磁共振成像:小儿患者身体磁共振成像加速两年经验总结

PRACTICAL PARALLEL IMAGING COMPRESSED SENSING MRI: SUMMARY OF TWO YEARS OF EXPERIENCE IN ACCELERATING BODY MRI OF PEDIATRIC PATIENTS.

作者信息

Vasanawala Ss, Murphy Mj, Alley Mt, Lai P, Keutzer K, Pauly Jm, Lustig M

机构信息

Radiology, Stanford University.

Electrical Engineering and Computer Science, University of California, Berkeley.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2011 Dec 31;2011:1039-1043. doi: 10.1109/ISBI.2011.5872579.

Abstract

For the last two years, we have been experimenting with applying compressed sensing parallel imaging for body imaging of pediatric patients. It is a joint-effort by teams from UC Berkeley, Stanford University and GE Healthcare. This paper aims to summarize our experience so far. We describe our acquisition approach: 3D spoiled-gradient-echo with poisson-disc random undersampling of the phase encodes. Our re-construction approach: ℓ-SPIRiT, an iterative autocalibrating parallel imaging reconstruction that enforces both data consistency and joint-sparsity in the wavelet domain. Our implementation: an on-line parallelized implementation of ℓ-SPIRiT on multi-core CPU and General Purpose Graphics Processors (GPGPU) that achieves sub-minute 3D reconstructions with 8-channels. Clinical results showing higher quality reconstruction and better diagnostic confidence than parallel imaging alone at accelerations on the order of number of coils.

摘要

在过去的两年里,我们一直在尝试将压缩感知并行成像应用于儿科患者的身体成像。这是加州大学伯克利分校、斯坦福大学和通用电气医疗集团的团队共同努力的成果。本文旨在总结我们到目前为止的经验。我们描述了我们的采集方法:采用泊松盘随机欠采样相位编码的三维扰相梯度回波。我们的重建方法:ℓ-SPIRiT,一种迭代自校准并行成像重建方法,它在小波域中强制实现数据一致性和联合稀疏性。我们的实现方式:在多核CPU和通用图形处理器(GPGPU)上对ℓ-SPIRiT进行在线并行化实现,该实现能够在8通道的情况下在一分钟内完成三维重建。临床结果表明,在加速倍数达到线圈数量级时,与单独使用并行成像相比,重建质量更高,诊断信心更强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索