Suppr超能文献

实用并行成像压缩感知磁共振成像:小儿患者身体磁共振成像加速两年经验总结

PRACTICAL PARALLEL IMAGING COMPRESSED SENSING MRI: SUMMARY OF TWO YEARS OF EXPERIENCE IN ACCELERATING BODY MRI OF PEDIATRIC PATIENTS.

作者信息

Vasanawala Ss, Murphy Mj, Alley Mt, Lai P, Keutzer K, Pauly Jm, Lustig M

机构信息

Radiology, Stanford University.

Electrical Engineering and Computer Science, University of California, Berkeley.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2011 Dec 31;2011:1039-1043. doi: 10.1109/ISBI.2011.5872579.

Abstract

For the last two years, we have been experimenting with applying compressed sensing parallel imaging for body imaging of pediatric patients. It is a joint-effort by teams from UC Berkeley, Stanford University and GE Healthcare. This paper aims to summarize our experience so far. We describe our acquisition approach: 3D spoiled-gradient-echo with poisson-disc random undersampling of the phase encodes. Our re-construction approach: ℓ-SPIRiT, an iterative autocalibrating parallel imaging reconstruction that enforces both data consistency and joint-sparsity in the wavelet domain. Our implementation: an on-line parallelized implementation of ℓ-SPIRiT on multi-core CPU and General Purpose Graphics Processors (GPGPU) that achieves sub-minute 3D reconstructions with 8-channels. Clinical results showing higher quality reconstruction and better diagnostic confidence than parallel imaging alone at accelerations on the order of number of coils.

摘要

在过去的两年里,我们一直在尝试将压缩感知并行成像应用于儿科患者的身体成像。这是加州大学伯克利分校、斯坦福大学和通用电气医疗集团的团队共同努力的成果。本文旨在总结我们到目前为止的经验。我们描述了我们的采集方法:采用泊松盘随机欠采样相位编码的三维扰相梯度回波。我们的重建方法:ℓ-SPIRiT,一种迭代自校准并行成像重建方法,它在小波域中强制实现数据一致性和联合稀疏性。我们的实现方式:在多核CPU和通用图形处理器(GPGPU)上对ℓ-SPIRiT进行在线并行化实现,该实现能够在8通道的情况下在一分钟内完成三维重建。临床结果表明,在加速倍数达到线圈数量级时,与单独使用并行成像相比,重建质量更高,诊断信心更强。

相似文献

1
PRACTICAL PARALLEL IMAGING COMPRESSED SENSING MRI: SUMMARY OF TWO YEARS OF EXPERIENCE IN ACCELERATING BODY MRI OF PEDIATRIC PATIENTS.
Proc IEEE Int Symp Biomed Imaging. 2011 Dec 31;2011:1039-1043. doi: 10.1109/ISBI.2011.5872579.
2
Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.
IEEE Trans Med Imaging. 2012 Jun;31(6):1250-62. doi: 10.1109/TMI.2012.2188039. Epub 2012 Feb 15.
3
Compressed sensing MRI reconstruction from 3D multichannel data using GPUs.
Magn Reson Med. 2017 Dec;78(6):2265-2274. doi: 10.1002/mrm.26636. Epub 2017 Feb 15.
4
Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.
PLoS One. 2020 Feb 21;15(2):e0229418. doi: 10.1371/journal.pone.0229418. eCollection 2020.
5
Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.
Magn Reson Med. 2014 Feb;71(2):645-60. doi: 10.1002/mrm.24716.
7
Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.
Magn Reson Imaging. 2014 Sep;32(7):924-33. doi: 10.1016/j.mri.2014.04.008. Epub 2014 Apr 24.
9
ACCELERATED CORONARY MRI USING 3D SPIRIT-RAKI WITH SPARSITY REGULARIZATION.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1692-1695. doi: 10.1109/ISBI.2019.8759459. Epub 2019 Jul 11.

引用本文的文献

1
Learning Task-Specific Strategies for Accelerated MRI.
IEEE Trans Comput Imaging. 2024;10:1040-1054. doi: 10.1109/tci.2024.3410521. Epub 2024 Jul 1.
3
AutoSamp: Autoencoding k-Space Sampling via Variational Information Maximization for 3D MRI.
IEEE Trans Med Imaging. 2025 Jan;44(1):270-283. doi: 10.1109/TMI.2024.3443292. Epub 2025 Jan 2.
4
Accelerated parallel magnetic resonance imaging with compressed sensing using structured sparsity.
J Med Imaging (Bellingham). 2024 May;11(3):033504. doi: 10.1117/1.JMI.11.3.033504. Epub 2024 Jun 26.
5
Whole-Cerebrum distortion-free three-dimensional pseudo-continuous arterial spin labeling at 7T.
Neuroimage. 2023 Aug 15;277:120251. doi: 10.1016/j.neuroimage.2023.120251. Epub 2023 Jun 24.
6
Whole-Cerebrum distortion-free three-dimensional pseudo-Continuous Arterial Spin Labeling at 7T.
medRxiv. 2023 Apr 25:2023.04.24.23289051. doi: 10.1101/2023.04.24.23289051.
7
AI in MRI: Computational Frameworks for a Faster, Optimized, and Automated Imaging Workflow.
Bioengineering (Basel). 2023 Apr 20;10(4):492. doi: 10.3390/bioengineering10040492.
8
Learning a preconditioner to accelerate compressed sensing reconstructions in MRI.
Magn Reson Med. 2022 Apr;87(4):2063-2073. doi: 10.1002/mrm.29073. Epub 2021 Nov 9.
9
Utilizing the Wavelet Transform's Structure in Compressed Sensing.
Signal Image Video Process. 2021 Oct;15(7):1407-1414. doi: 10.1007/s11760-021-01872-y. Epub 2021 Mar 9.
10
Accelerating whole-heart 3D T2 mapping: Impact of undersampling strategies and reconstruction techniques.
PLoS One. 2021 Sep 10;16(9):e0252777. doi: 10.1371/journal.pone.0252777. eCollection 2021.

本文引用的文献

1
SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space.
Magn Reson Med. 2010 Aug;64(2):457-71. doi: 10.1002/mrm.22428.
2
Improved pediatric MR imaging with compressed sensing.
Radiology. 2010 Aug;256(2):607-16. doi: 10.1148/radiol.10091218. Epub 2010 Jun 7.
3
Imaging of abdominal tumours: CT or MRI?
Pediatr Radiol. 2008 Jun;38 Suppl 3:S452-8. doi: 10.1007/s00247-008-0846-5.
4
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
5
SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method.
Top Magn Reson Imaging. 2004 Aug;15(4):223-36. doi: 10.1097/01.rmr.0000136558.09801.dd.
6
Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med. 2002 Jun;47(6):1202-10. doi: 10.1002/mrm.10171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验