Alkan Cagan, Mardani Morteza, Liao Congyu, Li Zhitao, Vasanawala Shreyas S, Pauly John M
IEEE Trans Med Imaging. 2025 Jan;44(1):270-283. doi: 10.1109/TMI.2024.3443292. Epub 2025 Jan 2.
Accelerated MRI protocols routinely involve a predefined sampling pattern that undersamples the k-space. Finding an optimal pattern can enhance the reconstruction quality, however this optimization is a challenging task. To address this challenge, we introduce a novel deep learning framework, AutoSamp, based on variational information maximization that enables joint optimization of sampling pattern and reconstruction of MRI scans. We represent the encoder as a non-uniform Fast Fourier Transform that allows continuous optimization of k-space sample locations on a non-Cartesian plane, and the decoder as a deep reconstruction network. Experiments on public 3D acquired MRI datasets show improved reconstruction quality of the proposed AutoSamp method over the prevailing variable density and variable density Poisson disc sampling for both compressed sensing and deep learning reconstructions. We demonstrate that our data-driven sampling optimization method achieves 4.4dB, 2.0dB, 0.75dB, 0.7dB PSNR improvements over reconstruction with Poisson Disc masks for acceleration factors of R =5, 10, 15, 25, respectively. Prospectively accelerated acquisitions with 3D FSE sequences using our optimized sampling patterns exhibit improved image quality and sharpness. Furthermore, we analyze the characteristics of the learned sampling patterns with respect to changes in acceleration factor, measurement noise, underlying anatomy, and coil sensitivities. We show that all these factors contribute to the optimization result by affecting the sampling density, k-space coverage and point spread functions of the learned sampling patterns.
加速磁共振成像(MRI)协议通常涉及对k空间进行欠采样的预定义采样模式。找到最佳模式可以提高重建质量,然而这种优化是一项具有挑战性的任务。为了应对这一挑战,我们引入了一种基于变分信息最大化的新型深度学习框架AutoSamp,它能够对采样模式和MRI扫描重建进行联合优化。我们将编码器表示为非均匀快速傅里叶变换,它允许在非笛卡尔平面上对k空间样本位置进行连续优化,将解码器表示为深度重建网络。在公开的3D采集MRI数据集上进行的实验表明,对于压缩感知和深度学习重建,所提出的AutoSamp方法比流行的可变密度和可变密度泊松盘采样具有更高的重建质量。我们证明,对于加速因子R = 5、10、15、25,我们的数据驱动采样优化方法相对于使用泊松盘掩码重建分别实现了4.4dB、2.0dB、0.75dB、0.7dB的峰值信噪比(PSNR)提升。使用我们优化的采样模式对3D快速自旋回波(FSE)序列进行前瞻性加速采集,图像质量和清晰度得到了改善。此外,我们分析了学习到的采样模式在加速因子、测量噪声、基础解剖结构和线圈灵敏度变化方面的特征。我们表明,所有这些因素通过影响学习到的采样模式的采样密度、k空间覆盖范围和点扩散函数来对优化结果产生影响。