Suppr超能文献

加速冠状动脉 MRI 与 sRAKI:一种无数据库的自洽神经网络 k 空间重建方法,用于任意欠采样。

Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.

机构信息

Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America.

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America.

出版信息

PLoS One. 2020 Feb 21;15(2):e0229418. doi: 10.1371/journal.pone.0229418. eCollection 2020.

Abstract

PURPOSE

To accelerate coronary MRI acquisitions with arbitrary undersampling patterns by using a novel reconstruction algorithm that applies coil self-consistency using subject-specific neural networks.

METHODS

Self-consistent robust artificial-neural-networks for k-space interpolation (sRAKI) performs iterative parallel imaging reconstruction by enforcing self-consistency among coils. The approach bears similarity to SPIRiT, but extends the linear convolutions in SPIRiT to nonlinear interpolation using convolutional neural networks (CNNs). These CNNs are trained individually for each scan using the scan-specific autocalibrating signal (ACS) data. Reconstruction is performed by imposing the learned self-consistency and data-consistency, which enables sRAKI to support random undersampling patterns. Fully-sampled targeted right coronary artery MRI was acquired in six healthy subjects. The data were retrospectively undersampled, and reconstructed using SPIRiT, l1-SPIRiT and sRAKI for acceleration rates of 2 to 5. Additionally, prospectively undersampled whole-heart coronary MRI was acquired to further evaluate reconstruction performance.

RESULTS

sRAKI reduces noise amplification and blurring artifacts compared with SPIRiT and l1-SPIRiT, especially at high acceleration rates in targeted coronary MRI. Quantitative analysis shows that sRAKI outperforms these techniques in terms of normalized mean-squared-error (44% and ~21% over SPIRiT and [Formula: see text]-SPIRiT at rate 5) and vessel sharpness (10% and ~20% over SPIRiT and l1-SPIRiT at rate 5). Whole-heart data shows the sharpest coronary arteries when resolved using sRAKI, with 11% and 15% improvement in vessel sharpness over SPIRiT and l1-SPIRiT, respectively.

CONCLUSION

sRAKI is a database-free neural network-based reconstruction technique that may further accelerate coronary MRI with arbitrary undersampling patterns, while improving noise resilience over linear parallel imaging and image sharpness over l1 regularization techniques.

摘要

目的

通过使用一种新的重建算法,该算法使用针对特定于主体的神经网络应用线圈自一致性,来加速具有任意欠采样模式的冠状动脉 MRI 采集。

方法

自我一致的稳健人工神经网络(sRAKI)通过对线圈进行自一致性约束来执行迭代并行成像重建。该方法类似于 SPIRiT,但将 SPIRiT 中的线性卷积扩展到使用卷积神经网络(CNN)的非线性插值。这些 CNN 是针对每个扫描使用扫描特定的自校准信号(ACS)数据进行单独训练的。重建是通过施加所学到的自一致性和数据一致性来执行的,这使得 sRAKI 能够支持随机欠采样模式。在六个健康受试者中采集了完全采样的靶向右冠状动脉 MRI。使用 SPIRiT、l1-SPIRiT 和 sRAKI 对数据进行回顾性欠采样,并以 2 到 5 的加速率进行重建。此外,还采集了前瞻性欠采样的全心冠状动脉 MRI,以进一步评估重建性能。

结果

与 SPIRiT 和 l1-SPIRiT 相比,sRAKI 减少了噪声放大和模糊伪影,尤其是在靶向冠状动脉 MRI 中的高加速率下。定量分析表明,sRAKI 在归一化均方误差方面优于这些技术(在速率 5 时,与 SPIRiT 和 l1-SPIRiT 相比,分别为44%和21%)和血管锐度(在速率 5 时,与 SPIRiT 和 l1-SPIRiT 相比,分别为10%和20%)。当使用 sRAKI 解决时,全心数据显示出最清晰的冠状动脉,血管锐度分别比 SPIRiT 和 l1-SPIRiT 提高了 11%和 15%。

结论

sRAKI 是一种无数据库的基于神经网络的重建技术,可进一步加速具有任意欠采样模式的冠状动脉 MRI,同时提高线性并行成像的噪声鲁棒性和 l1 正则化技术的图像锐度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f839/7034900/9c705ad43c0b/pone.0229418.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验