Nanoscience and Technology Division, Argonne National Laboratory , Lemont, Illinois 60439, United States.
Nano Lett. 2014 Feb 12;14(2):759-64. doi: 10.1021/nl404071u. Epub 2014 Jan 27.
In this work, we report on the direct visualization of magnetic structure in sculpted three-dimensional cobalt (Co) nanospirals with a wire diameter of 20 nm and outer spiral diameter of 115 nm and on the magnetic interactions between the nanospirals, using aberration-corrected Lorentz transmission electron microscopy. By analyzing the magnetic domains in three dimensions at the nanoscale, we show that magnetic domain formation in the Co nanospirals is a result of the shape anisotropy dominating over the magnetocrystalline anisotropy of the system. We also show that the strong dipolar magnetic interactions between adjacent closely packed nanospirals leads to their magnetization directions adopting alternating directions to minimize the total magnetostatic energy of the system. Deviations from such magnetization structure can only be explained by analyzing the complex three-dimensional structure of the nanospirals. These nanostructures possess an inherent chirality due to their growth conditions and are of significant importance as nanoscale building blocks in magneto-optical devices.
在这项工作中,我们利用相衬校正的洛伦兹透射电子显微镜,直接观察到了直径为 20nm、外螺旋直径为 115nm 的雕刻三维钴(Co)纳米螺旋体的磁结构,并研究了纳米螺旋体之间的磁相互作用。通过在纳米尺度上对三维磁畴进行分析,我们表明 Co 纳米螺旋体中的磁畴形成是由于形状各向异性主导了系统的磁晶各向异性。我们还表明,相邻紧密堆积的纳米螺旋体之间的强偶极磁相互作用导致它们的磁化方向采用交替方向,以最小化系统的总静磁能量。只有通过分析纳米螺旋体的复杂三维结构,才能解释这种偏离理想磁化结构的现象。这些纳米结构由于其生长条件而具有固有手性,作为磁光器件中的纳米尺度构建块具有重要意义。