Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany.
Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 03680, Kyiv, Ukraine.
Sci Rep. 2018 Jan 16;8(1):866. doi: 10.1038/s41598-017-18835-4.
Crystals with broken inversion symmetry can host fundamentally appealing and technologically relevant periodical or localized chiral magnetic textures. The type of the texture as well as its magnetochiral properties are determined by the intrinsic Dzyaloshinskii-Moriya interaction (DMI), which is a material property and can hardly be changed. Here we put forth a method to create new artificial chiral nanoscale objects with tunable magnetochiral properties from standard magnetic materials by using geometrical manipulations. We introduce a mesoscale Dzyaloshinskii-Moriya interaction that combines the intrinsic spin-orbit and extrinsic curvature-driven DMI terms and depends both on the material and geometrical parameters. The vector of the mesoscale DMI determines magnetochiral properties of any curved magnetic system with broken inversion symmetry. The strength and orientation of this vector can be changed by properly choosing the geometry. For a specific example of nanosized magnetic helix, the same material system with different geometrical parameters can acquire one of three zero-temperature magnetic phases, namely, phase with a quasitangential magnetization state, phase with a periodical state and one intermediate phase with a periodical domain wall state. Our approach paves the way towards the realization of a new class of nanoscale spintronic and spinorbitronic devices with the geometrically tunable magnetochirality.
具有非中心反演对称的晶体可以容纳具有吸引力的基本的和与技术相关的周期性或局域手征磁性织构。织构的类型及其磁手征性质由固有的 Dzyaloshinskii-Moriya 相互作用(DMI)决定,DMI 是一种材料性质,几乎无法改变。在这里,我们提出了一种通过几何操作从标准磁性材料中创建具有可调磁手征性质的新型人工手征纳米物体的方法。我们引入了一种介观 Dzyaloshinskii-Moriya 相互作用,它结合了固有的自旋轨道和外曲率驱动的 DMI 项,并且取决于材料和几何参数。介观 DMI 的矢量决定了具有非中心反演对称的任何弯曲磁性系统的磁手征性质。通过适当选择几何形状,可以改变该矢量的强度和方向。对于纳米尺寸磁性螺旋的特定示例,相同的材料系统具有不同的几何参数可以获得三种零温磁相之一,即具有准切向磁化状态的相、具有周期性状态的相和具有周期性畴壁状态的中间相。我们的方法为实现具有几何可调磁手征性的新型纳米尺度自旋电子学和自旋轨道电子学器件铺平了道路。