1] Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA [2] Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.
Nat Commun. 2014;5:3117. doi: 10.1038/ncomms4117.
Surfaces decorated with dense arrays of microscopic fibres exhibit unique materials properties, including superhydrophobicity and low friction. Nature relies on 'hairy' surfaces to protect blood capillaries from wear and infection (endothelial glycocalyx). Here we report on the discovery of self-assembled tunable networks of microscopic polymer fibres ranging from wavy colloidal 'fur' to highly interconnected networks. The networks emerge via dynamic self-assembly in an alternating electric field from a non-aqueous suspension of 'sticky' polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles. We demonstrate, using atomic layer deposition, that the networks can serve as a template for a transparent conductor. These self-assembled tunable materials are promising candidates for large surface area electrodes in batteries and organic photovoltaic cells, as well as for microfluidic sensors and filters.
表面装饰着密集排列的微观纤维具有独特的材料特性,包括超疏水性和低摩擦。自然界依赖于“毛茸茸”的表面来保护毛细血管免受磨损和感染(内皮糖萼)。在这里,我们报告了自组装可调谐的微观聚合物纤维网络的发现,范围从波浪状胶体“毛发”到高度互联的网络。这些网络通过在非水悬浮液中的动态自组装从具有受控聚合度的“粘性”聚合物胶体颗粒在交变电场中出现。所得结构由电场的频率和幅度以及颗粒的表面性质来调节。我们使用原子层沉积证明,这些网络可用作透明导体的模板。这些自组装可调谐材料有望成为电池和有机光伏电池中大表面积电极的候选材料,以及微流控传感器和过滤器的候选材料。