Suppr超能文献

自组装苯丙氨酸纳米纤维构建3D纳米纤维网络

Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers.

作者信息

Wang Xianfeng, Chen Yi Charlie, Li Bingyun

机构信息

Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, United States.

Department of Biology, Natural Science Division, Alderson-Broaddus University, Philippi, WV 26416, United States.

出版信息

RSC Adv. 2015 Jan 1;5(11):8022-8027. doi: 10.1039/C4RA13159B.

Abstract

Self-assembled synthetic materials are typically disordered, and controlling the alignment of such materials at the nanometer scale may be important for a variety of biological applications. In this study, we have applied directional freeze-drying, for the first time, to develop well aligned three dimensional (3D) nanofibrous materials using amino acid like L-phenylalanine (Phe). 3D free-standing Phe nanofibrous monoliths have been successfully prepared using directional freeze-drying, and have presented a unique hierarchical structure with well-aligned nanofibers at the nanometer scale and an ordered compartmental architecture at the micrometer scale. We have found that the physical properties (e.g. nanofiber density and alignment) of the nanofibrous materials could be tuned by controlling the concentration and pH of the Phe solution and the freezing temperature. Moreover, the same strategy (i.e. directional freeze-drying) has been successfully applied to assemble peptide nanofibrous materials using a dipeptide (i.e. diphenylalanine), and to assemble Phe-based nanofibrous composites using polyethylenimine and poly(vinyl alcohol). The tunability of the nanofibrous structures together with the biocompatibility of Phe may make these 3D nanofibrous materials suitable for a variety of applications, including biosensor templates, tissue scaffolds, filtration membranes, and absorbents. The strategy reported here is likely applicable to create aligned nanofibrous structures using other amino acids, peptides, and polymers.

摘要

自组装合成材料通常是无序的,而在纳米尺度上控制此类材料的排列对于多种生物应用可能很重要。在本研究中,我们首次应用定向冷冻干燥技术,使用诸如L-苯丙氨酸(Phe)的氨基酸来制备排列良好的三维(3D)纳米纤维材料。通过定向冷冻干燥成功制备了3D自立式Phe纳米纤维整体材料,其呈现出独特的分级结构,在纳米尺度上具有排列良好的纳米纤维,在微米尺度上具有有序的隔室结构。我们发现,通过控制Phe溶液的浓度、pH值和冷冻温度,可以调节纳米纤维材料的物理性质(如纳米纤维密度和排列)。此外,相同的策略(即定向冷冻干燥)已成功应用于使用二肽(即二苯基丙氨酸)组装肽纳米纤维材料,以及使用聚乙烯亚胺和聚乙烯醇组装基于Phe的纳米纤维复合材料。纳米纤维结构的可调性以及Phe的生物相容性可能使这些3D纳米纤维材料适用于多种应用,包括生物传感器模板、组织支架、过滤膜和吸收剂。本文报道的策略可能适用于使用其他氨基酸、肽和聚合物创建排列的纳米纤维结构。

相似文献

1
Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers.
RSC Adv. 2015 Jan 1;5(11):8022-8027. doi: 10.1039/C4RA13159B.
2
Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
Tissue Eng Part C Methods. 2013 Jun;19(6):458-72. doi: 10.1089/ten.TEC.2012.0417. Epub 2012 Dec 12.
3
Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice.
Tissue Eng Part C Methods. 2017 Jan;23(1):50-59. doi: 10.1089/ten.TEC.2016.0408.
4
Assembly of Chitin Nanofibers into Porous Biomimetic Structures via Freeze Drying.
ACS Macro Lett. 2014 Feb 18;3(2):185-190. doi: 10.1021/mz400543f. Epub 2014 Jan 28.
7
Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering.
J Biomed Mater Res A. 2017 Jul;105(7):1900-1910. doi: 10.1002/jbm.a.36053. Epub 2017 Apr 3.
8
Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth.
Acta Biomater. 2016 Jun;37:131-42. doi: 10.1016/j.actbio.2016.04.008. Epub 2016 Apr 7.
9
Shape-controllable nanofibrous membranes with well-aligned fibers and robust mechanical properties for PM capture.
RSC Adv. 2019 Jun 4;9(30):17473-17478. doi: 10.1039/c9ra02341k. eCollection 2019 May 29.

引用本文的文献

1
Self-assembly of l-phenylalanine amino acid: electrostatic induced hindrance of fibril formation.
RSC Adv. 2019 Apr 23;9(22):12596-12605. doi: 10.1039/c9ra00268e. eCollection 2019 Apr 17.
2
Capacity Fade Analysis of Sulfur Cathodes in Lithium-Sulfur Batteries.
Adv Sci (Weinh). 2016 Jul 21;3(12):1600101. doi: 10.1002/advs.201600101. eCollection 2016 Dec.
3
Metabolite amyloids: a new paradigm for inborn error of metabolism disorders.
J Inherit Metab Dis. 2016 Jul;39(4):483-8. doi: 10.1007/s10545-016-9946-9. Epub 2016 Jun 6.

本文引用的文献

1
Assembly of Chitin Nanofibers into Porous Biomimetic Structures via Freeze Drying.
ACS Macro Lett. 2014 Feb 18;3(2):185-190. doi: 10.1021/mz400543f. Epub 2014 Jan 28.
2
Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets.
Prog Mater Sci. 2013 Oct;58(8):1173-1243. doi: 10.1016/j.pmatsci.2013.05.001. Epub 2013 May 26.
3
Biomimetic electrospun nanofibrous structures for tissue engineering.
Mater Today (Kidlington). 2013 Jun 1;16(6):229-241. doi: 10.1016/j.mattod.2013.06.005.
4
Aligned nanofibers as an interfacial layer for achieving high-detectivity and fast-response organic photodetectors.
ACS Appl Mater Interfaces. 2014 May 28;6(10):7032-7. doi: 10.1021/am501977w. Epub 2014 May 8.
5
Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating.
Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4561-6. doi: 10.1002/anie.201400457. Epub 2014 Mar 28.
6
Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.
ACS Appl Mater Interfaces. 2014 Apr 9;6(7):5130-6. doi: 10.1021/am5003662. Epub 2014 Mar 21.
7
9
Self-assembled tunable networks of sticky colloidal particles.
Nat Commun. 2014;5:3117. doi: 10.1038/ncomms4117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验