Suppr超能文献

用于评估和比较采集和重建技术的逼真 4D MRI 腹部体模。

Realistic 4D MRI abdominal phantom for the evaluation and comparison of acquisition and reconstruction techniques.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.

Department of Radiology, UH Cleveland Medical Center, Cleveland, Ohio.

出版信息

Magn Reson Med. 2019 Mar;81(3):1863-1875. doi: 10.1002/mrm.27545. Epub 2018 Nov 5.

Abstract

PURPOSE

This work presents a 4D numerical abdominal phantom, which includes T and T relaxation times, proton density fat fraction, perfusion, and diffusion, as well as respiratory motion for the evaluation and comparison of acquisition and reconstruction techniques.

METHODS

The 3D anatomical mesh models were non-rigidly scaled and shifted by respiratory motion derived from an in vivo scan. A time series of voxelized 3D abdominal phantom images were obtained with contrast determined by the tissue properties and pulse sequence parameters. Two example simulations: (1) 3D T mapping under breath-hold and free-breathing acquisition conditions and (2) two different reconstruction techniques for accelerated 3D dynamic contrast-enhanced MRI, are presented. The source codes can be found at https://github.com/SeiberlichLab/Abdominal_MR_Phantom.

RESULTS

The proposed 4D abdominal phantom can successfully simulate images and MRI data with nonrigid respiratory motion and specific contrast settings and data sampling schemes. In example 1, the use of a numerical 4D abdominal phantom was demonstrated to aid in the comparison between different approaches for volumetric T mapping. In example 2, the average arterial fraction over the healthy hepatic parenchyma as calculated with spiral generalized autocalibrating partial parallel acquisition was closer to that from the fully sampled data than the arterial fraction from conjugate gradient sensitivity encoding, although both are elevated compared to the gold-standard reference.

CONCLUSION

This realistic abdominal MR phantom can be used to simulate different pulse sequences and data sampling schemes for the comparison of acquisition and reconstruction methods under controlled conditions that are impossible or prohibitively difficult to perform in vivo.

摘要

目的

本研究提出了一种包含 T1 和 T2 弛豫时间、质子密度脂肪分数、灌注和扩散以及呼吸运动的 4D 腹部数值体模,用于评估和比较采集和重建技术。

方法

通过源自体内扫描的呼吸运动,对 3D 解剖网格模型进行非刚性缩放和移位。通过组织特性和脉冲序列参数确定对比度,获得具有对比的体素化 3D 腹部体模时间序列图像。展示了两个示例模拟:(1)在屏气和自由呼吸采集条件下进行的 3D T 映射,以及(2)两种不同的加速 3D 动态对比增强 MRI 重建技术。源代码可在 https://github.com/SeiberlichLab/Abdominal_MR_Phantom 上找到。

结果

所提出的 4D 腹部体模能够成功模拟具有非刚性呼吸运动和特定对比度设置以及数据采样方案的图像和 MRI 数据。在示例 1 中,使用数值 4D 腹部体模来辅助比较容积 T 映射的不同方法。在示例 2 中,与完全采样数据相比,螺旋广义自动校准部分并行采集计算的健康肝实质的平均动脉分数更接近,尽管与金标准参考相比,两者都升高了。

结论

这种真实的腹部磁共振体模可用于模拟不同的脉冲序列和数据采样方案,以便在无法或难以在体内进行的受控条件下比较采集和重建方法。

相似文献

1
Realistic 4D MRI abdominal phantom for the evaluation and comparison of acquisition and reconstruction techniques.
Magn Reson Med. 2019 Mar;81(3):1863-1875. doi: 10.1002/mrm.27545. Epub 2018 Nov 5.
2
A tool for validating MRI-guided strategies: a digital breathing CT/MRI phantom of the abdominal site.
Med Biol Eng Comput. 2017 Nov;55(11):2001-2014. doi: 10.1007/s11517-017-1646-6. Epub 2017 Apr 8.
3
Free-breathing, fat-corrected T mapping of the liver with stack-of-stars MRI, and joint estimation of T, PDFF, , and .
Magn Reson Med. 2024 Nov;92(5):1913-1932. doi: 10.1002/mrm.30182. Epub 2024 Jun 23.
4
Hybrid T - and T -weighted radial acquisition for free-breathing abdominal examination.
Magn Reson Med. 2018 Nov;80(5):1935-1948. doi: 10.1002/mrm.27200. Epub 2018 Apr 15.
5
Sliding motion compensated low-rank plus sparse (SMC-LS) reconstruction for high spatiotemporal free-breathing liver 4D DCE-MRI.
Magn Reson Imaging. 2019 May;58:56-66. doi: 10.1016/j.mri.2019.01.012. Epub 2019 Jan 15.
8
Free-breathing 3D whole-heart joint T/T mapping and water/fat imaging at 0.55 T.
Magn Reson Med. 2024 Oct;92(4):1511-1524. doi: 10.1002/mrm.30139. Epub 2024 Jun 13.
9
Free-Breathing Abdominal Magnetic Resonance Fingerprinting Using a Pilot Tone Navigator.
J Magn Reson Imaging. 2021 Oct;54(4):1138-1151. doi: 10.1002/jmri.27673. Epub 2021 May 5.
10
Patient-based 4D digital breast phantom for perfusion contrast-enhanced breast CT imaging.
Med Phys. 2018 Oct;45(10):4448-4460. doi: 10.1002/mp.13156. Epub 2018 Sep 19.

引用本文的文献

1
Abdominal MR Multitasking for radiotherapy treatment planning: A motion-resolved and multicontrast 3D imaging approach.
Magn Reson Med. 2025 Jan;93(1):108-120. doi: 10.1002/mrm.30256. Epub 2024 Aug 22.
2
Phantoms for Quantitative Body MRI: a review and discussion of the phantom value.
MAGMA. 2024 Aug;37(4):535-549. doi: 10.1007/s10334-024-01181-8. Epub 2024 Jun 19.
3
Toward a realistic in silico abdominal phantom for QSM.
Magn Reson Med. 2023 Jun;89(6):2402-2418. doi: 10.1002/mrm.29597. Epub 2023 Jan 25.
5
4D Golden-Angle Radial MRI at Subsecond Temporal Resolution.
NMR Biomed. 2023 Feb;36(2):e4844. doi: 10.1002/nbm.4844. Epub 2022 Nov 25.
8
Realistic Dynamic Numerical Phantom for MRI of the Upper Vocal Tract.
J Imaging. 2020 Aug 27;6(9):86. doi: 10.3390/jimaging6090086.
9
MRSIGMA: Magnetic Resonance SIGnature MAtching for real-time volumetric imaging.
Magn Reson Med. 2020 Sep;84(3):1280-1292. doi: 10.1002/mrm.28200. Epub 2020 Feb 21.

本文引用的文献

1
Accelerated T mapping combining parallel MRI and model-based reconstruction: GRAPPATINI.
J Magn Reson Imaging. 2018 Aug;48(2):359-368. doi: 10.1002/jmri.25972. Epub 2018 Feb 15.
2
Recent advances in parallel imaging for MRI.
Prog Nucl Magn Reson Spectrosc. 2017 Aug;101:71-95. doi: 10.1016/j.pnmrs.2017.04.002. Epub 2017 May 2.
3
Development of a Computerized 4-D MRI Phantom for Liver Motion Study.
Technol Cancer Res Treat. 2017 Dec;16(6):1051-1059. doi: 10.1177/1533034617723753. Epub 2017 Aug 9.
4
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI.
Phys Med Biol. 2016 Oct 7;61(19):6905-6918. doi: 10.1088/0031-9155/61/19/6905. Epub 2016 Sep 12.
5
Multiparametric imaging with heterogeneous radiofrequency fields.
Nat Commun. 2016 Aug 16;7:12445. doi: 10.1038/ncomms12445.
6
Rapid volumetric T1 mapping of the abdomen using three-dimensional through-time spiral GRAPPA.
Magn Reson Med. 2016 Apr;75(4):1457-65. doi: 10.1002/mrm.25693. Epub 2015 May 18.
8
MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2014 Aug 20;16(1):63. doi: 10.1186/s12968-014-0063-3.
9
Three-dimensional through-time radial GRAPPA for renal MR angiography.
J Magn Reson Imaging. 2014 Oct;40(4):864-74. doi: 10.1002/jmri.24439. Epub 2014 Jan 21.
10
Diffusion-weighted MRI and optimal b-value for characterization of liver lesions.
Acta Radiol. 2014 Jun;55(5):532-42. doi: 10.1177/0284185113502017. Epub 2013 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验