Suppr超能文献

广义系综算法的蛋白质折叠模拟。

Protein folding simulations by generalized-ensemble algorithms.

机构信息

Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, 526-0829, Japan.

出版信息

Adv Exp Med Biol. 2014;805:1-27. doi: 10.1007/978-3-319-02970-2_1.

Abstract

In the protein folding problem, conventional simulations in physical statistical mechanical ensembles, such as the canonical ensemble with fixed temperature, face a great difficulty. This is because there exist a huge number of local-minimum-energy states in the system and the conventional simulations tend to get trapped in these states, giving wrong results. Generalized-ensemble algorithms are based on artificial unphysical ensembles and overcome the above difficulty by performing random walks in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. The advantage of generalized-ensemble simulations lies in the fact that they not only avoid getting trapped in states of energy local minima but also allows the calculations of physical quantities as functions of temperature or other parameters from a single simulation run. In this article we review the generalized-ensemble algorithms. Four examples, multicanonical algorithm, replica-exchange method, replica-exchange multicanonical algorithm, and multicanonical replica-exchange method, are described in detail. Examples of their applications to the protein folding problem are presented.

摘要

在蛋白质折叠问题中,传统的物理统计力学系综中的模拟,如固定温度的正则系综,面临着很大的困难。这是因为系统中存在大量的局部能量极小状态,而传统的模拟往往会被困在这些状态中,给出错误的结果。广义系综算法基于人为的非物理系综,通过在势能、体积和其他物理量或它们相应的共轭参数(如温度、压力等)中进行随机游走,克服了上述困难。广义系综模拟的优点在于,它们不仅避免了被困在能量局部极小状态中,而且还允许从单个模拟运行中计算出温度或其他参数作为物理量的函数。本文综述了广义系综算法。详细描述了四个例子,多正则算法、复制交换方法、复制交换多正则算法和多正则复制交换方法。并展示了它们在蛋白质折叠问题中的应用实例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验