CHU de Québec Research Center, 10 rue de l'Espinay, Quebec City, QC, Canada G1L 3L5, and Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Université Laval, 1050 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6.
CHU de Québec Research Center, 10 rue de l'Espinay, Quebec City, QC, Canada G1L 3L5, and Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Université Laval, 1050 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6.
Diabetes Res Clin Pract. 2014 Mar;103(3):419-25. doi: 10.1016/j.diabres.2013.12.009. Epub 2013 Dec 25.
Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention.
This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy.
The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66-79), 81% (80-82) and 0.824 (0.793-0.855), respectively, for the identification of GDM cases requiring insulin therapy.
External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
妊娠糖尿病(GDM)通常在妊娠晚期诊断,从而排除了早期预防干预的可能。本研究旨在对大量的高加索裔孕妇群体进行验证,以确定基于文献中提出的临床特征的模型是否能在妊娠早期识别出那些有发展为 GDM 高危风险的孕妇,从而便于随访和预防。
这是一项队列研究,纳入了 7929 名前瞻性接受初次产前检查的孕妇。通过自填问卷和从病历中提取数据获得临床信息。评估了四个已提出的临床风险预测模型在识别发生 GDM 和需要胰岛素治疗的女性方面的性能。
四个模型对识别发生 GDM 的女性的受试者工作特征曲线下面积(AUC)在 0.668 至 0.756 之间,表现与原始研究相似。基于种族、体重指数、糖尿病家族史和既往 GDM 史的最佳预测模型,其对需要胰岛素治疗的 GDM 病例的识别灵敏度、特异性和 AUC 分别为 73%(66%-79%)、81%(80%-82%)和 0.824(0.793-0.855)。
仅基于临床特征的四个风险预测模型的外部验证结果与原始研究中的观察结果相似。在我们的队列中,这种策略似乎特别有希望用于早期预测需要胰岛素治疗的 GDM。将最近提出的生化标志物添加到此类模型中,有可能达到支持临床应用的性能。