Suppr超能文献

通过空间位阻与 RNA 二级结构结合调控 Dscam 外显子 17 的可变剪接。

Regulation of Dscam exon 17 alternative splicing by steric hindrance in combination with RNA secondary structures.

机构信息

Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China.

出版信息

RNA Biol. 2013 Dec;10(12):1822-33. doi: 10.4161/rna.27176. Epub 2013 Nov 21.

Abstract

The gene Down syndrome cell adhesion molecule (Dscam) potentially encodes 38 016 distinct isoforms in Drosophila melanogaster via mutually exclusive splicing. Here we reveal a combinatorial mechanism of regulation of Dscam exon 17 mutually exclusive splicing through steric hindrance in combination with RNA secondary structure. This mutually exclusive behavior is enforced by steric hindrance, due to the close proximity of the exon 17.2 branch point to exon 17.1 in Diptera, and the interval size constraint in non-Dipteran species. Moreover, intron-exon RNA structures are evolutionarily conserved in 36 non-Drosophila species of six distantly related orders (Diptera, Lepidoptera, Coleoptera, Hymenoptera, Hemiptera, and Phthiraptera), which regulates the selection of exon 17 variants via masking the splice site. By contrast, a previously uncharacterized RNA structure specifically activated exon 17.1 by bringing splice sites closer together in Drosophila, while the other moderately suppressed exon 17.1 selection by hindering the accessibility of polypyrimidine sequences. Taken together, these data suggest a phylogeny of increased complexity in regulating alternative splicing of Dscam exon 17 spanning more than 300 million years of insect evolution. These results also provide models of the regulation of alternative splicing through steric hindrance in combination with dynamic structural codes.

摘要

基因唐氏综合征细胞黏附分子(Dscam)通过相互排斥剪接,有可能在黑腹果蝇中编码 38016 种不同的异构体。在这里,我们揭示了一种通过空间位阻与 RNA 二级结构相结合的调节 Dscam 外显子 17 相互排斥剪接的组合机制。这种相互排斥的行为是由空间位阻引起的,这是由于外显子 17.2 分支点与双翅目昆虫的外显子 17.1 非常接近,以及非双翅目物种的间隔大小限制。此外,在 36 种非果蝇的 6 个远缘目(双翅目、鳞翅目、鞘翅目、膜翅目、半翅目和虱目)的物种中,内含子-外显子 RNA 结构是进化保守的,通过屏蔽剪接位点来调节外显子 17 变体的选择。相比之下,在果蝇中,一种以前未被描述的 RNA 结构通过使剪接位点更接近来特异性地激活外显子 17.1,而另一种结构则通过阻碍多嘧啶序列的可及性来适度抑制外显子 17.1 的选择。总的来说,这些数据表明,Dscam 外显子 17 选择性剪接的调控在超过 3 亿年的昆虫进化中呈现出越来越复杂的系统发生。这些结果还提供了通过空间位阻与动态结构密码相结合来调节选择性剪接的模型。

相似文献

1
Regulation of Dscam exon 17 alternative splicing by steric hindrance in combination with RNA secondary structures.
RNA Biol. 2013 Dec;10(12):1822-33. doi: 10.4161/rna.27176. Epub 2013 Nov 21.
4
Role of RNA secondary structures in regulating Dscam alternative splicing.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194381. doi: 10.1016/j.bbagrm.2019.04.008. Epub 2019 Apr 29.
6
A regulator of Dscam mutually exclusive splicing fidelity.
Nat Struct Mol Biol. 2007 Dec;14(12):1134-40. doi: 10.1038/nsmb1339.
7
Mechanisms of Drosophila Dscam mutually exclusive splicing regulation.
Biochem Soc Trans. 2012 Aug;40(4):804-9. doi: 10.1042/BST20120060.
8
RNA secondary structures in mutually exclusive splicing: unique evolutionary signature from the midge.
RNA. 2020 Sep;26(9):1086-1093. doi: 10.1261/rna.075259.120. Epub 2020 May 29.
9
Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated.
Genetics. 2001 Oct;159(2):599-608. doi: 10.1093/genetics/159.2.599.
10
Long-range RNA pairings contribute to mutually exclusive splicing.
RNA. 2016 Jan;22(1):96-110. doi: 10.1261/rna.053314.115. Epub 2015 Nov 9.

引用本文的文献

1
2
Restriction of an intron size en route to endothermy.
Nucleic Acids Res. 2021 Mar 18;49(5):2460-2487. doi: 10.1093/nar/gkab046.
3
isoTarget: A Genetic Method for Analyzing the Functional Diversity of Splicing Isoforms In Vivo.
Cell Rep. 2020 Nov 10;33(6):108361. doi: 10.1016/j.celrep.2020.108361.
4
Revisiting Dscam diversity: lessons from clustered protocadherins.
Cell Mol Life Sci. 2019 Feb;76(4):667-680. doi: 10.1007/s00018-018-2951-4. Epub 2018 Oct 20.
6
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Genes (Basel). 2018 Jun 15;9(6):302. doi: 10.3390/genes9060302.
7
Role and convergent evolution of competing RNA secondary structures in mutually exclusive splicing.
RNA Biol. 2017 Oct 3;14(10):1399-1410. doi: 10.1080/15476286.2017.1294308. Epub 2017 Feb 17.
8
14-3-3 isoforms bind directly exon B of the 5'-UTR of human surfactant protein A2 mRNA.
Am J Physiol Lung Cell Mol Physiol. 2015 Jul 15;309(2):L147-57. doi: 10.1152/ajplung.00088.2015. Epub 2015 May 22.

本文引用的文献

2
Drosophila Vap-33 is required for axonal localization of Dscam isoforms.
J Neurosci. 2012 Nov 28;32(48):17241-50. doi: 10.1523/JNEUROSCI.2834-12.2012.
3
Evidence for widespread association of mammalian splicing and conserved long-range RNA structures.
RNA. 2012 Jan;18(1):1-15. doi: 10.1261/rna.029249.111. Epub 2011 Nov 29.
4
The genomic impact of 100 million years of social evolution in seven ant species.
Trends Genet. 2012 Jan;28(1):14-21. doi: 10.1016/j.tig.2011.08.005. Epub 2011 Oct 5.
5
RNA secondary structure in mutually exclusive splicing.
Nat Struct Mol Biol. 2011 Feb;18(2):159-68. doi: 10.1038/nsmb.1959. Epub 2011 Jan 9.
6
RNA sequencing: advances, challenges and opportunities.
Nat Rev Genet. 2011 Feb;12(2):87-98. doi: 10.1038/nrg2934. Epub 2010 Dec 30.
7
A regulator of Dscam mutually exclusive splicing fidelity.
Nat Struct Mol Biol. 2007 Dec;14(12):1134-40. doi: 10.1038/nsmb1339.
9
Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences.
Nature. 2010 Feb 25;463(7284):1079-83. doi: 10.1038/nature08742. Epub 2010 Feb 10.
10
Expansion of the eukaryotic proteome by alternative splicing.
Nature. 2010 Jan 28;463(7280):457-63. doi: 10.1038/nature08909.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验