Suppr超能文献

有序亚稳纳米棒到化合物半导体晶体的相转变驱动生长。

Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods.

机构信息

1] Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany [2].

1] Department of Chemical and Environmental Sciences and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland [2] The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA [3].

出版信息

Nat Commun. 2014;5:3133. doi: 10.1038/ncomms4133.

Abstract

In polycrystalline semiconductors, grain boundaries are often sites with prevalence for electron-hole recombination and various strategies have been followed to minimize grain boundary areas. Generally, large grains or epitaxial films can be obtained at high temperatures. However, high growth temperatures limit the choice of substrate materials and can prove elusive for semiconductors comprising volatile elements such as kesterite Cu2ZnSnS4. Here we show that this limitation can be overcome by a transition of a matrix of densely packed metastable nanorods into large stable grains. Real-time analysis reveals that the grain growth is driven by a direct, isocompositional solid-state phase transition. Following this route, semiconductor films with a large-grained microstructure can be achieved within a few seconds at relatively low temperatures. Grain size as well as electrical and optical properties of the resulting films can be controlled via the heating rate. This synthesis route opens new possibilities for the fabrication of semiconductor crystals for photoelectric devices with tailored microstructures.

摘要

在多晶半导体中,晶界通常是电子-空穴复合的高发区域,因此人们采用了各种策略来最小化晶界面积。通常,在高温下可以获得大晶粒或外延薄膜。然而,高温生长限制了衬底材料的选择,对于包含易挥发元素(如 kesterite Cu2ZnSnS4)的半导体来说,这可能难以实现。在这里,我们表明可以通过将密集排列的亚稳纳米棒基质转变为大的稳定晶粒来克服这一限制。实时分析表明,晶粒生长是由直接的、同组成的固态相转变驱动的。通过这种途径,可以在相对较低的温度下在几秒钟内实现具有大晶粒微结构的半导体薄膜。通过加热速率可以控制所得薄膜的晶粒尺寸以及电和光学性能。这种合成途径为光电器件中具有定制微结构的半导体晶体的制造开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验