Suppr超能文献

增强脑电图对运动意图的低延迟检测,用于闭环脑机接口应用。

Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications.

出版信息

IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96. doi: 10.1109/TBME.2013.2294203.

Abstract

In recent years, the detection of voluntary motor intentions from electroencephalogram (EEG) has been used for triggering external devices in closed-loop brain-computer interface (BCI) research. Movement-related cortical potentials (MRCP), a type of slow cortical potentials, have been recently used for detection. In order to enhance the efficacy of closed-loop BCI systems based on MRCPs, a manifold method called Locality Preserving Projection, followed by a linear discriminant analysis (LDA) classifier (LPP-LDA) is proposed in this paper to detect MRCPs from scalp EEG in real time. In an online experiment on nine healthy subjects, LPP-LDA statistically outperformed the classic matched filter approach with greater true positive rate (79 ± 11% versus 68 ± 10%; p = 0.007) and less false positives (1.4 ± 0.8/min versus 2.3 ± 1.1/min; p = 0.016 ). Moreover, the proposed system performed detections with significantly shorter latency (315 ± 165 ms versus 460 ± 123 ms; p = 0.013), which is a fundamental characteristics to induce neuroplastic changes in closed-loop BCIs, following the Hebbian principle. In conclusion, the proposed system works as a generic brain switch, with high accuracy, low latency, and easy online implementation. It can thus be used as a fundamental element of BCI systems for neuromodulation and motor function rehabilitation.

摘要

近年来,从脑电图(EEG)中检测自愿运动意图已被用于闭环脑机接口(BCI)研究中的外部设备触发。运动相关皮质电位(MRCP)是一种慢皮质电位,最近已被用于检测。为了提高基于 MRCP 的闭环 BCI 系统的效果,本文提出了一种流形方法,称为保局投影,然后是线性判别分析(LDA)分类器(LPP-LDA),用于实时从头皮 EEG 检测 MRCP。在九名健康受试者的在线实验中,LPP-LDA 在统计上优于经典匹配滤波器方法,具有更高的真阳性率(79±11%对 68±10%;p=0.007)和更少的假阳性(1.4±0.8/min 对 2.3±1.1/min;p=0.016)。此外,所提出的系统具有明显更短的检测潜伏期(315±165 ms 对 460±123 ms;p=0.013),这是根据赫布原理在闭环 BCI 中诱导神经可塑性变化的基本特征。总之,所提出的系统作为一种通用的脑开关,具有高精度、低延迟和易于在线实现的特点。因此,它可以用作神经调节和运动功能康复的 BCI 系统的基本元件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验