Suppr超能文献

TSPNet:一种用于基于脑电图的多类上肢运动想象脑机接口分类的时空并行网络。

TSPNet: a time-spatial parallel network for classification of EEG-based multiclass upper limb motor imagery BCI.

作者信息

Bi Jingfeng, Chu Ming, Wang Gang, Gao Xiaoshan

机构信息

School of Automation, Beijing University of Posts and Telecommunications, Beijing, China.

School of Automation Science and Electrical Engineering, Beihang University, Beijing, China.

出版信息

Front Neurosci. 2023 Dec 15;17:1303242. doi: 10.3389/fnins.2023.1303242. eCollection 2023.

Abstract

The classification of electroencephalogram (EEG) motor imagery signals has emerged as a prominent research focus within the realm of brain-computer interfaces. Nevertheless, the conventional, limited categories (typically just two or four) offered by brain-computer interfaces fail to provide an extensive array of control modes. To address this challenge, we propose the Time-Spatial Parallel Network (TSPNet) for recognizing six distinct categories of upper limb motor imagery. Within TSPNet, temporal and spatial features are extracted separately, with the time dimension feature extractor and spatial dimension feature extractor performing their respective functions. Following this, the Time-Spatial Parallel Feature Extractor is employed to decouple the connection between temporal and spatial features, thus diminishing feature redundancy. The Time-Spatial Parallel Feature Extractor deploys a gating mechanism to optimize weight distribution and parallelize time-spatial features. Additionally, we introduce a feature visualization algorithm based on signal occlusion frequency to facilitate a qualitative analysis of TSPNet. In a six-category scenario, TSPNet achieved an accuracy of 49.1% ± 0.043 on our dataset and 49.7% ± 0.029 on a public dataset. Experimental results conclusively establish that TSPNet outperforms other deep learning methods in classifying data from these two datasets. Moreover, visualization results vividly illustrate that our proposed framework can generate distinctive classifier patterns for multiple categories of upper limb motor imagery, discerned through signals of varying frequencies. These findings underscore that, in comparison to other deep learning methods, TSPNet excels in intention recognition, which bears immense significance for non-invasive brain-computer interfaces.

摘要

脑电图(EEG)运动想象信号的分类已成为脑机接口领域的一个突出研究重点。然而,脑机接口提供的传统的、有限的类别(通常只有两类或四类)无法提供广泛的控制模式。为应对这一挑战,我们提出了时空并行网络(TSPNet)来识别六种不同类别的上肢运动想象。在TSPNet中,时间和空间特征被分别提取,时间维度特征提取器和空间维度特征提取器各自发挥作用。在此之后,采用时空并行特征提取器来解耦时间和空间特征之间的联系,从而减少特征冗余。时空并行特征提取器部署了一种门控机制来优化权重分布并使时空特征并行化。此外,我们引入了一种基于信号遮挡频率的特征可视化算法,以促进对TSPNet的定性分析。在六类别场景下,TSPNet在我们的数据集上准确率达到49.1%±0.043,在一个公共数据集上达到49.7%±0.029。实验结果确凿地表明,在对这两个数据集的数据进行分类时,TSPNet优于其他深度学习方法。而且,可视化结果生动地表明,我们提出的框架可以为多类上肢运动想象生成独特的分类器模式,通过不同频率的信号来辨别。这些发现强调,与其他深度学习方法相比,TSPNet在意图识别方面表现出色,这对非侵入式脑机接口具有重大意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb9f/10754979/d533c6996d4b/fnins-17-1303242-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验