Suppr超能文献

定义和检测生物模型中的结构敏感性:开发一个新框架。

Defining and detecting structural sensitivity in biological models: developing a new framework.

作者信息

Adamson M W, Morozov A Yu

机构信息

Department of Mathematics, University of Leicester, University Road, Leicester , LE1 7RH, UK,

出版信息

J Math Biol. 2014 Dec;69(6-7):1815-48. doi: 10.1007/s00285-014-0753-3. Epub 2014 Jan 22.

Abstract

When we construct mathematical models to represent biological systems, there is always uncertainty with regards to the model specification--whether with respect to the parameters or to the formulation of model functions. Sometimes choosing two different functions with close shapes in a model can result in substantially different model predictions: a phenomenon known in the literature as structural sensitivity, which is a significant obstacle to improving the predictive power of biological models. In this paper, we revisit the general definition of structural sensitivity, compare several more specific definitions and discuss their usefulness for the construction and analysis of biological models. Then we propose a general approach to reveal structural sensitivity with regards to certain system properties, which considers infinite-dimensional neighbourhoods of the model functions: a far more powerful technique than the conventional approach of varying parameters for a fixed functional form. In particular, we suggest a rigorous method to unearth sensitivity with respect to the local stability of systems' equilibrium points. We present a method for specifying the neighbourhood of a general unknown function with [Formula: see text] inflection points in terms of a finite number of local function properties, and provide a rigorous proof of its completeness. Using this powerful result, we implement our method to explore sensitivity in several well-known multicomponent ecological models and demonstrate the existence of structural sensitivity in these models. Finally, we argue that structural sensitivity is an important intrinsic property of biological models, and a direct consequence of the complexity of the underlying real systems.

摘要

当我们构建数学模型来表示生物系统时,在模型规范方面总是存在不确定性——无论是关于参数还是模型函数的公式。有时在模型中选择两个形状相近的不同函数会导致模型预测结果有很大差异:这种现象在文献中被称为结构敏感性,它是提高生物模型预测能力的一个重大障碍。在本文中,我们重新审视结构敏感性的一般定义,比较几个更具体的定义,并讨论它们在生物模型构建和分析中的有用性。然后我们提出一种揭示关于某些系统属性的结构敏感性的一般方法,该方法考虑模型函数的无限维邻域:这是一种比固定函数形式下改变参数的传统方法强大得多的技术。特别是,我们提出一种严格的方法来挖掘关于系统平衡点局部稳定性的敏感性。我们提出一种方法,根据有限数量的局部函数属性来指定具有[公式:见原文]个拐点的一般未知函数的邻域,并提供其完备性的严格证明。利用这个强大的结果,我们应用我们的方法来探索几个著名的多组分生态模型中的敏感性,并证明这些模型中存在结构敏感性。最后,我们认为结构敏感性是生物模型的一个重要内在属性,是底层真实系统复杂性的直接结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验