Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N (Denmark).
Angew Chem Int Ed Engl. 2014 Feb 3;53(6):1548-51. doi: 10.1002/anie.201307712. Epub 2014 Jan 21.
Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activation domain of the activator for thyroid hormone and retinoid receptors (ACTR) is intrinsically disordered and folds upon binding to the nuclear coactivator binding domain (NCBD) of the CREB binding protein. A number of mutants was designed that selectively perturbs the amount of secondary structure in unbound ACTR without interfering with the intermolecular interactions between ACTR and NCBD. Using NMR spectroscopy and fluorescence-monitored stopped-flow kinetic measurements we show that the secondary structure content in helix 1 of ACTR indeed influences the binding kinetics. The results thus support the notion of preformed secondary structure as an important determinant for molecular recognition in intrinsically disordered proteins.
许多固有无序的蛋白质在与其他大分子结合时会折叠。在有序复合物中存在的二级结构在未结合状态下通常是短暂形成的。然而,这种瞬态结构对结合过程的影响尚不清楚。甲状腺激素和视黄酸受体的激活剂(ACTR)的激活结构域是固有无序的,并且在与 CREB 结合蛋白的核共激活剂结合域(NCBD)结合时折叠。设计了许多突变体,这些突变体选择性地扰乱未结合的 ACTR 中的二级结构的量,而不干扰 ACTR 和 NCBD 之间的分子间相互作用。使用 NMR 光谱和荧光监测的停流动力学测量,我们表明 ACTR 中螺旋 1 的二级结构含量确实会影响结合动力学。因此,结果支持预形成的二级结构作为固有无序蛋白质中分子识别的重要决定因素的观点。