Suppr超能文献

慢性鼻-鼻窦炎患者的传导性嗅觉丧失?29 例患者的计算流体动力学研究。

Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients.

机构信息

Monell Chemical Senses Center, Philadelphia, PA; Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA.

出版信息

Int Forum Allergy Rhinol. 2014 Apr;4(4):298-308. doi: 10.1002/alr.21272. Epub 2014 Jan 21.

Abstract

BACKGROUND

Besides sensorineural factors, conductive impediments likely contribute to olfactory losses in chronic rhinosinusitis (CRS) patients, yet no conclusive evidence exists. We aimed to examine possible conductive factors using computational fluid dynamics (CFD) models.

METHODS

A total of 29 CRS patients were assessed via odorant detection thresholds (ODTs), rhinomanometry (nasal resistance [NR]), acoustic rhinometry (minimum-cross-sectional area [MCA]) and computed tomography (CT) staging. CFD simulations of nasal airflow and odorant absorption to olfactory region were carried out based on individual CTs. Biopsies of olfactory epithelium (OE) were collected, cryosectioned, stained, and scored for erosion.

RESULTS

Significant correlations to ODTs were found for 3 variables: odor absorption in the olfactory region (r = -0.60, p < 0.01), MCA (r = -0.40, p < 0.05), and CT staging (r = 0.42, p < 0.05). However, significant findings were limited to ODTs of the highly soluble l-carvone. Multiple regression analysis revealed that these variables combined, with the addition of NR, can account for 65% of the total variance in ODTs. CT staging correlated significantly with OE erosion (r = 0.77, p < 0.01) and can replace the latter in the regression with comparable outcomes. Partial correlations suggest the contributions of both conductive and sensorineural variables are more prominent if adjusted for the effects of the other. Olfactory loss and inflammatory factors have strong bilateral involvement, whereas conductive factors are independent between sides. As validation, CFD-simulated NRs significantly correlated with rhinomanometrically assessed NRs (r = 0.60, p < 0.01).

CONCLUSION

Both conductive and sensorineural mechanisms can contribute to olfactory losses in CRS. CFD modeling provides critical guidance in understanding the role of conductive impediments in olfactory dysfunction in CRS.

摘要

背景

除了感觉神经性因素外,传导性障碍可能也是慢性鼻-鼻窦炎(CRS)患者嗅觉丧失的原因,但目前尚无确凿证据。我们旨在使用计算流体动力学(CFD)模型来检查可能的传导性因素。

方法

对 29 例 CRS 患者进行评估,评估指标包括气味检测阈值(ODT)、鼻阻力(NR)测压、声鼻测量(最小横截面积[MCA])和计算机断层扫描(CT)分期。根据患者的个体 CT 数据,进行鼻气流和气味吸收到嗅区的 CFD 模拟。收集嗅上皮(OE)活检标本,进行冷冻切片、染色,并对其进行侵蚀评分。

结果

发现 3 个变量与 ODT 有显著相关性:嗅觉区的气味吸收(r=-0.60,p<0.01)、MCA(r=-0.40,p<0.05)和 CT 分期(r=0.42,p<0.05)。然而,仅在高度溶解的 l-香芹酮的 ODT 中发现了显著的相关性。多元回归分析显示,这些变量与 NR 结合,可以解释 ODT 总方差的 65%。CT 分期与 OE 侵蚀显著相关(r=0.77,p<0.01),并且可以替代回归分析中的后者,产生类似的结果。偏相关分析表明,如果调整其他因素的影响,传导性和感觉神经性因素的贡献更为突出。嗅觉丧失和炎症因素有强烈的双侧受累,而传导性因素则在两侧之间是独立的。作为验证,CFD 模拟的 NR 与鼻阻力计评估的 NR 显著相关(r=0.60,p<0.01)。

结论

传导性和感觉神经性机制都可能导致 CRS 患者的嗅觉丧失。CFD 模型为理解 CRS 中传导性障碍在嗅觉功能障碍中的作用提供了重要的指导。

相似文献

1
Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients.
Int Forum Allergy Rhinol. 2014 Apr;4(4):298-308. doi: 10.1002/alr.21272. Epub 2014 Jan 21.
2
Neuropathology of the olfactory mucosa in chronic rhinosinusitis.
Am J Rhinol Allergy. 2010 Mar-Apr;24(2):110-20. doi: 10.2500/ajra.2010.24.3435.
4
Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis.
Int Forum Allergy Rhinol. 2020 Mar;10(3):343-355. doi: 10.1002/alr.22499. Epub 2019 Dec 19.
6
The role of TNF-α in inflammatory olfactory loss.
Laryngoscope. 2011 Nov;121(11):2481-6. doi: 10.1002/lary.22190. Epub 2011 Aug 31.
7
What is normal nasal airflow? A computational study of 22 healthy adults.
Int Forum Allergy Rhinol. 2014 Jun;4(6):435-46. doi: 10.1002/alr.21319. Epub 2014 Mar 24.
10
Olfactory function and disease severity in chronic rhinosinusitis.
Am J Rhinol Allergy. 2009 Mar-Apr;23(2):139-44. doi: 10.2500/ajra.2009.23.3286.

引用本文的文献

1
Mechanisms, diagnosis, and treatment of olfactory dysfunction in rhinosinusitis.
Eur J Med Res. 2025 Jun 11;30(1):474. doi: 10.1186/s40001-025-02740-y.
2
Structures and functions of the normal and injured human olfactory epithelium.
Front Neural Circuits. 2024 Jun 6;18:1406218. doi: 10.3389/fncir.2024.1406218. eCollection 2024.
3
Olfactory dysfunction and the role of stem cells in the regeneration of olfactory neurons.
Heliyon. 2024 Apr 18;10(9):e29948. doi: 10.1016/j.heliyon.2024.e29948. eCollection 2024 May 15.
4
Analysis of conductive olfactory dysfunction using computational fluid dynamics.
PLoS One. 2022 Jan 12;17(1):e0262579. doi: 10.1371/journal.pone.0262579. eCollection 2022.
5
Computational modeling of nasal nitric oxide flux from the paranasal sinuses: Validation against human experiment.
Comput Biol Med. 2021 Sep;136:104723. doi: 10.1016/j.compbiomed.2021.104723. Epub 2021 Jul 31.
6
Computational Fluid Dynamic Modeling Reveals Nonlinear Airway Stress during Trachea Development.
J Pediatr. 2021 Nov;238:324-328.e1. doi: 10.1016/j.jpeds.2021.07.038. Epub 2021 Jul 18.
7
Regional deposition of the allergens and micro-aerosols in the healthy human nasal airways.
J Aerosol Sci. 2021 Feb;152:105700. doi: 10.1016/j.jaerosci.2020.105700. Epub 2020 Oct 19.
8
COVID-19 and the Chemical Senses: Supporting Players Take Center Stage.
Neuron. 2020 Jul 22;107(2):219-233. doi: 10.1016/j.neuron.2020.06.032. Epub 2020 Jul 1.
9
Diseases of the nasal cavity.
Handb Clin Neurol. 2019;164:285-302. doi: 10.1016/B978-0-444-63855-7.00018-6.
10
The Application of Computational Fluid Dynamics in the Evaluation of Laryngotracheal Pathology.
Ann Otol Rhinol Laryngol. 2019 May;128(5):453-459. doi: 10.1177/0003489419826601. Epub 2019 Jan 28.

本文引用的文献

1
Amount of airflow required for olfactory perception in laryngectomees: a prospective interventional study.
Clin Otolaryngol. 2012 Feb;37(1):28-34. doi: 10.1111/j.1749-4486.2012.02442.x.
2
The role of TNF-α in inflammatory olfactory loss.
Laryngoscope. 2011 Nov;121(11):2481-6. doi: 10.1002/lary.22190. Epub 2011 Aug 31.
3
Correlation analyses of detection thresholds of four different odorants.
Rhinology. 2011 Aug;49(3):331-6. doi: 10.4193/Rhino10.263.
4
Influence of intranasal epinephrine and lidocaine spray on olfactory function tests in healthy human subjects.
Otolaryngol Head Neck Surg. 2011 Dec;145(6):946-50. doi: 10.1177/0194599811417801. Epub 2011 Aug 16.
7
Neuropathology of the olfactory mucosa in chronic rhinosinusitis.
Am J Rhinol Allergy. 2010 Mar-Apr;24(2):110-20. doi: 10.2500/ajra.2010.24.3435.
8
Analysis of the olfactory mucosa in chronic rhinosinusitis.
Ann N Y Acad Sci. 2009 Jul;1170:590-5. doi: 10.1111/j.1749-6632.2009.04364.x.
9
Comparison between odor thresholds for phenyl ethyl alcohol and butanol.
Chem Senses. 2009 Jul;34(6):523-7. doi: 10.1093/chemse/bjp029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验