Suppr超能文献

RAZOR:物联网的压缩和分类解决方案。

RAZOR: a compression and classification solution for the Internet of Things.

机构信息

Department of Information Engineering (DEI), University of Padova, Via Gradenigo, n.6b, 35131 Padova, Italy.

Institute IMDEA Networks, Av. del Mar Mediterraneo, 22, 28918 Leganes, Madrid, Spain.

出版信息

Sensors (Basel). 2013 Dec 19;14(1):68-94. doi: 10.3390/s140100068.

Abstract

The Internet of Things is expected to increase the amount of data produced and exchanged in the network, due to the huge number of smart objects that will interact with one another. The related information management and transmission costs are increasing and becoming an almost unbearable burden, due to the unprecedented number of data sources and the intrinsic vastness and variety of the datasets. In this paper, we propose RAZOR, a novel lightweight algorithm for data compression and classification, which is expected to alleviate both aspects by leveraging the advantages offered by data mining methods for optimizing communications and by enhancing information transmission to simplify data classification. In particular, RAZOR leverages the concept of motifs, recurrent features used for signal categorization, in order to compress data streams: in such a way, it is possible to achieve compression levels of up to an order of magnitude, while maintaining the signal distortion within acceptable bounds and allowing for simple lightweight distributed classification. In addition, RAZOR is designed to keep the computational complexity low, in order to allow its implementation in the most constrained devices. The paper provides results about the algorithm configuration and a performance comparison against state-of-the-art signal processing techniques.

摘要

物联网预计会增加网络中产生和交换的数据量,这是因为将有大量的智能物体相互交互。由于数据源数量空前,数据集内在的巨大和多样性,相关的信息管理和传输成本正在增加,并成为一个几乎无法承受的负担。在本文中,我们提出了 RAZOR,一种用于数据压缩和分类的新型轻量级算法,预计可以通过利用数据挖掘方法在优化通信方面提供的优势,并通过增强信息传输来简化数据分类,从而缓解这两个方面的问题。特别是,RAZOR 利用了模式的概念,即用于信号分类的重复特征,以便压缩数据流:通过这种方式,可以实现高达一个数量级的压缩水平,同时将信号失真保持在可接受的范围内,并允许简单的轻量级分布式分类。此外,RAZOR 的设计目的是保持低计算复杂度,以便在最受限制的设备中实现它。本文提供了有关算法配置的结果,并与最新的信号处理技术进行了性能比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c462/3926547/b7d80cf70cd6/sensors-14-00068f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验