Suppr超能文献

一种基于数据偏心率的面向物联网环境的不断演进的 TinyML 压缩算法。

An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity.

作者信息

Signoretti Gabriel, Silva Marianne, Andrade Pedro, Silva Ivanovitch, Sisinni Emiliano, Ferrari Paolo

机构信息

UFRN-PPgEEC, Postgraduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.

UNIBS-DIE, Department of Information Engineering, University of Brescia, 25123 Brescia, Italy.

出版信息

Sensors (Basel). 2021 Jun 17;21(12):4153. doi: 10.3390/s21124153.

Abstract

Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases.

摘要

目前,物联网(IoT)的应用正以极快的速度产生大量传感器数据,这使得数据的收集和存储成为一项挑战。这种情况催生了对有效数据压缩算法的需求,以便在微型和电池供电设备中管理数据,更重要的是,实现数据在网络中的共享。此外,考虑到通常采用无线通信(例如低功耗广域网)来连接现场设备,用户负载压缩还可以带来更好的频谱利用效益,进而为高密度应用场景带来优势。由于连接设备数量的增加,一个新的概念应运而生,即 TinyML。它使在微型、计算能力受限的设备上使用机器学习成为可能。这使得智能设备能够在本地实时分析和解释数据。因此,这项工作从TinyML的角度提出了一种适用于物联网的新的数据压缩解决方案(算法)。这种新方法称为 Tiny 异常压缩器(TAC),它基于数据偏心率。TAC 不需要预先建立的数学模型,也不需要对基础数据分布做任何假设。为了测试所提出解决方案的有效性并进行验证,我们使用文献中的另外两种算法(即摆动门趋势算法(SDT)和离散余弦变换(DCT))对两个真实世界数据集进行了对比分析。结果发现,TAC算法显示出了令人满意的结果,实现了高达98.33%的最大压缩率。此外,在所有情况下,它在压缩误差和峰值信噪比方面也超过了其他两个模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验