C.H.O.S.E. (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome "Tor Vergata", via del Politecnico 1, Rome, 00133, Italy.
Phys Chem Chem Phys. 2014 Mar 7;16(9):3918-23. doi: 10.1039/c3cp55313b.
We fabricated the first solid state modules based on organometal halide perovskite CH3NH3PbI3-xClx using Spiro-OMeTAD and poly(3-hexylthiophene) as hole transport materials. Device up-scaling was performed using innovative procedures to realize large-area cells and the integrated series-interconnections. The perovskite-based modules show a maximum conversion efficiency of 5.1% using both poly(3-hexylthiophene) and Spiro-OMeTAD. A long-term stability test was performed (in air, under AM1.5G, 1 Sun illumination conditions) using both materials showing different behaviour under continuous light stress. Whilst the poly(3-hexylthiophene)-based module efficiency drops by about 80% with respect to the initial value after 170 hours, the Spiro-based module shows a promising long-term stability maintaining more than 60% of its initial efficiency after 335 hours.
我们使用 Spiro-OMeTAD 和聚(3-己基噻吩)作为空穴传输材料,制备了首个基于有机卤化铅钙钛矿 CH3NH3PbI3-xClx 的固态模块。采用创新工艺进行器件扩展,以实现大面积电池和集成串联连接。使用聚(3-己基噻吩)和 Spiro-OMeTAD,基于钙钛矿的模块的最大转换效率达到 5.1%。使用这两种材料进行了长期稳定性测试(在空气中,在 AM1.5G、1 个太阳光照射条件下),结果表明它们在连续光应力下表现出不同的行为。聚(3-己基噻吩)基模块的效率在 170 小时后相对于初始值下降了约 80%,而基于 Spiro 的模块显示出有前途的长期稳定性,在 335 小时后仍保持其初始效率的 60%以上。