Department of Genetics and Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA, Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA, Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA and Molecular, Cellular, Developmental and Systems Biology Institute, Yale University, New Haven, CT 06516, USA.
Nucleic Acids Res. 2014 Apr;42(7):4779-90. doi: 10.1093/nar/gkt1374. Epub 2014 Jan 22.
Selection has been invaluable for genetic manipulation, although counter-selection has historically exhibited limited robustness and convenience. TolC, an outer membrane pore involved in transmembrane transport in E. coli, has been implemented as a selectable/counter-selectable marker, but counter-selection escape frequency using colicin E1 precludes using tolC for inefficient genetic manipulations and/or with large libraries. Here, we leveraged unbiased deep sequencing of 96 independent lineages exhibiting counter-selection escape to identify loss-of-function mutations, which offered mechanistic insight and guided strain engineering to reduce counter-selection escape frequency by ∼40-fold. We fundamentally improved the tolC counter-selection by supplementing a second agent, vancomycin, which reduces counter-selection escape by 425-fold, compared colicin E1 alone. Combining these improvements in a mismatch repair proficient strain reduced counter-selection escape frequency by 1.3E6-fold in total, making tolC counter-selection as effective as most selectable markers, and adding a valuable tool to the genome editing toolbox. These improvements permitted us to perform stable and continuous rounds of selection/counter-selection using tolC, enabling replacement of 10 alleles without requiring genotypic screening for the first time. Finally, we combined these advances to create an optimized E. coli strain for genome engineering that is ∼10-fold more efficient at achieving allelic diversity than previous best practices.
选择在遗传操作中非常有价值,尽管反向选择在历史上表现出有限的稳健性和便利性。TolC 是一种参与大肠杆菌跨膜运输的外膜孔道蛋白,已被用作可选择/可反向选择的标记物,但由于大肠杆菌素 E1 的反向选择逃逸频率,限制了 tolC 在低效遗传操作和/或大文库中的应用。在这里,我们利用 96 个独立谱系的无偏深度测序来识别反向选择逃逸的功能丧失突变,这提供了机制上的见解,并指导了菌株工程,将反向选择逃逸频率降低了约 40 倍。我们通过补充第二种药物万古霉素来从根本上改善 tolC 的反向选择,与单独使用大肠杆菌素 E1 相比,反向选择逃逸减少了 425 倍。在具有错配修复功能的菌株中结合这些改进,使 tolC 反向选择的逃逸频率降低了 1.3E6 倍,使其与大多数选择标记一样有效,并为基因组编辑工具包增加了一个有价值的工具。这些改进使我们能够使用 tolC 进行稳定和连续的选择/反向选择,首次无需进行基因型筛选即可替换 10 个等位基因。最后,我们结合这些进展,创建了一种优化的大肠杆菌菌株,用于基因组工程,其实现等位基因多样性的效率比以前的最佳实践提高了约 10 倍。