Grome Michael W, Nguyen Michael T A, Moonan Daniel W, Mohler Kyle, Gurara Kebron, Wang Shenqi, Hemez Colin, Stenton Benjamin J, Cao Yunteng, Radford Felix, Kornaj Maya, Patel Jaymin, Prome Maisha, Rogulina Svetlana, Sozanski David, Tordoff Jesse, Rinehart Jesse, Isaacs Farren J
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
Systems Biology Institute, Yale University, West Haven, CT, USA.
Nature. 2025 Mar;639(8054):512-521. doi: 10.1038/s41586-024-08501-x. Epub 2025 Feb 5.
The genetic code is conserved across all domains of life, yet exceptions have revealed variations in codon assignments and associated translation factors. Inspired by this natural malleability, synthetic approaches have demonstrated whole-genome replacement of synonymous codons to construct genomically recoded organisms (GROs) with alternative genetic codes. However, no efforts have fully leveraged translation factor plasticity and codon degeneracy to compress translation function to a single codon and assess the possibility of a non-degenerate code. Here we describe construction and characterization of Ochre, a GRO that fully compresses a translational function into a single codon. We replaced 1,195 TGA stop codons with the synonymous TAA in ∆TAG Escherichia coli C321.∆A. We then engineered release factor 2 (RF2) and tRNA to mitigate native UGA recognition, translationally isolating four codons for non-degenerate functions. Ochre thus utilizes UAA as the sole stop codon, with UGG encoding tryptophan and UAG and UGA reassigned for multi-site incorporation of two distinct non-standard amino acids into single proteins with more than 99% accuracy. Ochre fully compresses degenerate stop codons into a single codon and represents an important step toward a 64-codon non-degenerate code that will enable precise production of multi-functional synthetic proteins with unnatural encoded chemistries and broad utility in biotechnology and biotherapeutics.
遗传密码在所有生命域中都是保守的,但也存在一些例外情况,这些例外揭示了密码子分配和相关翻译因子的变异。受这种自然可塑性的启发,合成方法已证明可以对同义密码子进行全基因组替换,以构建具有替代遗传密码的基因组重编码生物(GRO)。然而,尚未有研究充分利用翻译因子的可塑性和密码子简并性将翻译功能压缩到单个密码子,并评估非简并密码的可能性。在此,我们描述了Ochre的构建与表征,这是一种将翻译功能完全压缩到单个密码子的GRO。我们在∆TAG大肠杆菌C321.∆A中,用同义密码子TAA替换了1195个TGA终止密码子。然后,我们对释放因子2(RF2)和tRNA进行工程改造,以减少对天然UGA的识别,从而在翻译上分离出四个用于非简并功能的密码子。因此,Ochre利用UAA作为唯一的终止密码子,UGG编码色氨酸,而UAG和UGA则被重新分配,用于将两种不同的非标准氨基酸多位点掺入单个蛋白质中,准确率超过99%。Ochre将简并终止密码子完全压缩到单个密码子,代表着朝着64个密码子的非简并密码迈出了重要一步,这将能够精确生产具有非天然编码化学性质的多功能合成蛋白质,并在生物技术和生物治疗中具有广泛的应用。