From the aDepartment of Radiation Oncology, London Health Sciences Centre, London, Ontario; bDepartment of Radiation Oncology, Juravinski Cancer Centre, Hamilton, Ontario; cRadiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario; dDepartment of Radiation Oncology, Kingston Regional Cancer Centre, Kingston, Ontario; eDepartment of Radiation Oncology, Montreal General Hospital, Montreal, Quebec; fDepartment of Radiation Oncology, Kelowna General Hospital, Kelowna, British Columbia; gDepartment of Radiation Oncology, L'Hotel Dieu de Quebec, Quebec City, Quebec; hDepartment of Radiation Oncology, British Columbia Cancer Agency - Vancouver Centre, Vancouver, British Columbia, Canada.
J Natl Compr Canc Netw. 2014 Jan;12(1):60-9. doi: 10.6004/jnccn.2014.0007.
This investigation reports on the biochemical and clinical outcomes of a newly created pan-Canadian Prostate Cancer Risk Stratification (ProCaRS) database developed by the Genitourinary Radiation Oncologists of Canada (GUROC). GUROC ProCaRS template-compliant data on 7974 patients who underwent radiotherapy were received from 7 unique databases. Descriptive analysis, Cox proportional hazards, and Kaplan-Meier analyses were performed using American Society for Radiation Oncology (ASTRO) biochemical failure-free survival (BFFS), prostate cancer-specific survival, and overall survival. Multivariable modeling for the primary ASTRO BFFS end point showed that age, prostate-specific antigen, T stage, and Gleason score and components such as hormonal therapy, and radiation treatment (brachytherapy with better outcome than external-beam) were predictive of outcome. Kaplan-Meier analysis of the existing GUROC and new NCCN classification system both showed good separation of all clinical outcome curves. The construction of a pan-Canadian database has informed important prostate cancer radiotherapy outcomes and risk stratification.
本研究报告了由加拿大泌尿生殖系统放射肿瘤学家(GUROC)创建的新的全加前列腺癌风险分层(ProCaRS)数据库的生化和临床结果。从 7 个独特的数据库中收到了符合 GUROC ProCaRS 模板的 7974 名接受放疗的患者的描述性分析、Cox 比例风险和 Kaplan-Meier 分析数据。使用美国放射肿瘤学会(ASTRO)生化无失败生存(BFFS)、前列腺癌特异性生存和总生存对主要 ASTRO BFFS 终点进行多变量建模,结果表明年龄、前列腺特异性抗原、T 分期和 Gleason 评分以及激素治疗和放射治疗(具有更好结果的近距离治疗优于外照射)等因素对结果具有预测性。现有的 GUROC 和新的 NCCN 分类系统的 Kaplan-Meier 分析均显示出所有临床结果曲线的良好分离。建立全加数据库为重要的前列腺癌放射治疗结果和风险分层提供了信息。