Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA.
Int J Radiat Oncol Biol Phys. 2012 Jul 15;83(4):1141-8. doi: 10.1016/j.ijrobp.2011.09.043. Epub 2011 Nov 16.
To assess the prognostic value of the percentage of positive biopsy cores (PPC) and perineural invasion in predicting the clinical outcomes after radiotherapy (RT) for prostate cancer and to explore the possibilities to improve on existing risk-stratification models.
Between 1993 and 2004, 1,056 patients with clinical Stage T1c-T3N0M0 prostate cancer, who had four or more biopsy cores sampled and complete biopsy core data available, were treated with external beam RT, with or without a high-dose-rate brachytherapy boost at William Beaumont Hospital. The median follow-up was 7.6 years. Multivariate Cox regression analysis was performed with PPC, Gleason score, pretreatment prostate-specific antigen, T stage, PNI, radiation dose, androgen deprivation, age, prostate-specific antigen frequency, and follow-up duration. A new risk stratification (PPC classification) was empirically devised to incorporate PPC and replace the T stage.
On multivariate Cox regression analysis, the PPC was an independent predictor of distant metastasis, cause-specific survival, and overall survival (all p < .05). A PPC >50% was associated with significantly greater distant metastasis (hazard ratio, 4.01; 95% confidence interval, 1.86-8.61), and its independent predictive value remained significant with or without androgen deprivation therapy (all p < .05). In contrast, PNI and T stage were only predictive for locoregional recurrence. Combining the PPC (≤50% vs. >50%) with National Comprehensive Cancer Network risk stratification demonstrated added prognostic value of distant metastasis for the intermediate-risk (hazard ratio, 5.44; 95% confidence interval, 1.78-16.6) and high-risk (hazard ratio, 4.39; 95% confidence interval, 1.70-11.3) groups, regardless of the use of androgen deprivation and high-dose RT (all p < .05). The proposed PPC classification appears to provide improved stratification of the clinical outcomes relative to the National Comprehensive Cancer Network classification.
The PPC is an independent and powerful predictor of clinical outcomes of prostate cancer after RT. A risk model replacing T stage with the PPC to reduce subjectivity demonstrated potentially improved stratification.
评估阳性活检核心百分比(PPC)和神经周围侵犯在预测前列腺癌放射治疗(RT)后临床结果中的预后价值,并探讨改进现有风险分层模型的可能性。
1993 年至 2004 年间,在威廉·博蒙特医院接受外照射 RT 治疗的 1056 例临床分期为 T1c-T3N0M0 前列腺癌患者,接受了 4 个或更多活检核心采样,并具有完整的活检核心数据。中位随访时间为 7.6 年。使用多变量 Cox 回归分析 PPC、Gleason 评分、预处理前列腺特异性抗原、T 分期、PNI、放疗剂量、雄激素剥夺、年龄、前列腺特异性抗原频率和随访时间。通过经验设计了一种新的风险分层(PPC 分类),将 PPC 纳入并替代 T 分期。
多变量 Cox 回归分析显示,PPC 是远处转移、疾病特异性生存率和总生存率的独立预测因子(均 p <.05)。PPC >50%与远处转移显著相关(危险比,4.01;95%置信区间,1.86-8.61),并且无论是否使用雄激素剥夺治疗,其独立预测价值均具有显著性(均 p <.05)。相比之下,PNI 和 T 分期仅预测局部区域复发。将 PPC(≤50%与>50%)与国家综合癌症网络风险分层相结合,显示出对中危(危险比,5.44;95%置信区间,1.78-16.6)和高危(危险比,4.39;95%置信区间,1.70-11.3)组的远处转移具有附加预后价值,无论是否使用雄激素剥夺和高剂量 RT(均 p <.05)。所提出的 PPC 分类似乎相对于国家综合癌症网络分类提供了对 RT 后前列腺癌临床结果的改善分层。
PPC 是 RT 后前列腺癌临床结果的独立且强大的预测因子。用 PPC 替代 T 分期的风险模型显示出潜在的改善分层,减少了主观性。