Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015.
J Neurosci. 2014 Jan 22;34(4):1314-24. doi: 10.1523/JNEUROSCI.3073-13.2014.
In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Activity of auditory nerve fibers reflects this frequency-specific topographic pattern, known as tonotopy, and imparts frequency tuning onto their postsynaptic target neurons in the cochlear nucleus. In birds, cochlear nucleus magnocellularis (NM) neurons encode the temporal properties of acoustic stimuli by "locking" discharges to a particular phase of the input signal. Physiological specializations exist in gradients corresponding to the tonotopic axis in NM that reflect the characteristic frequency (CF) of their auditory nerve fiber inputs. One feature of NM neurons that has not been investigated across the tonotopic axis is short-term synaptic plasticity. NM offers a rather homogeneous population of neurons with a distinct topographical distribution of synaptic properties that is ideal for the investigation of specialized synaptic plasticity. Here we demonstrate for the first time that short-term synaptic depression (STD) is expressed topographically, where unitary high CF synapses are more robust with repeated stimulation. Correspondingly, high CF synapses drive spiking more reliably than their low CF counterparts. We show that postsynaptic AMPA receptor desensitization does not contribute to the observed difference in STD. Further, rate of recovery from depression, a presynaptic property, does not differ tonotopically. Rather, we show that another presynaptic feature, readily releasable pool (RRP) size, is tonotopically distributed and inversely correlated with vesicle release probability. Mathematical model results demonstrate that these properties of vesicle dynamics are sufficient to explain the observed tonotopic distribution of STD.
在听觉系统中,声音在平行的频率调谐电路中被处理,这个过程始于耳蜗。听觉神经纤维的活动反映了这种特定于频率的拓扑模式,即音位图,并将频率调谐赋予耳蜗核中的突触后靶神经元。在鸟类中,耳蜗核的大细胞神经元通过将放电“锁定”到输入信号的特定相位来编码声刺激的时间特性。在与音位图轴对应的梯度中存在生理专业化,反映了其听觉神经纤维输入的特征频率 (CF)。NM 神经元的一个尚未在音位图轴上进行调查的特征是短期突触可塑性。NM 提供了一个相当同质的神经元群体,具有明显的突触特性拓扑分布,非常适合研究专门的突触可塑性。在这里,我们首次证明短期突触抑制 (STD) 是地形表达的,其中单元高 CF 突触在重复刺激下更稳健。相应地,高 CF 突触比低 CF 突触更可靠地驱动尖峰。我们表明,观察到的 STD 差异与 AMPA 受体脱敏后突触后不相关。此外,从抑制中恢复的速率,即突触前特性,在音位图上没有差异。相反,我们表明,另一个突触前特征,即易释放池 (RRP) 大小,是音位图分布的,与囊泡释放概率呈反比。数学模型结果表明,这些囊泡动力学特性足以解释观察到的 STD 的音位图分布。