Suppr超能文献

通过微结构工程调控有机突触电解质门控晶体管的神经形态行为及其潜在应用

Modulating Neuromorphic Behavior of Organic Synaptic Electrolyte-Gated Transistors Through Microstructure Engineering and Potential Applications.

作者信息

Wu Fu-Chiao, Chen Chun-Yu, Wang Yu-Wu, You Chun-Bin, Wang Li-Yun, Ruan Jrjeng, Chou Wei-Yang, Lai Wei-Chih, Cheng Horng-Long

机构信息

Department of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan.

Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41211-41222. doi: 10.1021/acsami.4c05966. Epub 2024 Jul 25.

Abstract

Organic synaptic transistors are a promising technology for advanced electronic devices with simultaneous computing and memory functions and for the application of artificial neural networks. In this study, the neuromorphic electrical characteristics of organic synaptic electrolyte-gated transistors are correlated with the microstructural and interfacial properties of the active layers. This is accomplished by utilizing a semiconducting/insulating polyblend-based pseudobilayer with embedded source and drain electrodes, referred to as PB-ESD architecture. Three variations of poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA) PB-ESD-based organic synaptic transistors are fabricated, each exhibiting distinct microstructures and electrical characteristics, thus serving excellent samples for exploring the critical factors influencing neuro-electrical properties. Poor microstructures of P3HT within the active layer and a flat active layer/ion-gel interface correspond to typical neuromorphic behaviors such as potentiated excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and short-term potentiation (STP). Conversely, superior microstructures of P3HT and a rough active layer/ion-gel interface correspond to significantly higher channel conductance and enhanced EPSC and PPF characteristics as well as long-term potentiation behavior. Such devices were further applied to the simulation of neural networks, which produced a good recognition accuracy. However, excessive PMMA penetration into the P3HT conducting channel leads to features of a depressed EPSC and paired-pulse depression, which are uncommon in organic synaptic transistors. The inclusion of a second gate electrode enables the as-prepared organic synaptic transistors to function as two-input synaptic logic gates, performing various logical operations and effectively mimicking neural modulation functions. Microstructure and interface engineering is an effective method to modulate the neuromorphic behavior of organic synaptic transistors and advance the development of bionic artificial neural networks.

摘要

有机突触晶体管是一种很有前途的技术,可用于具有同步计算和存储功能的先进电子设备以及人工神经网络的应用。在本研究中,有机突触电解质门控晶体管的神经形态电学特性与有源层的微观结构和界面特性相关。这是通过利用一种基于半导体/绝缘聚合物共混物的伪双层结构来实现的,该结构嵌入了源极和漏极电极,称为PB-ESD结构。制备了三种基于聚(3-己基噻吩)(P3HT)/聚(甲基丙烯酸甲酯)(PMMA)PB-ESD的有机突触晶体管变体,每种变体都表现出独特的微观结构和电学特性,因此是探索影响神经电学特性的关键因素的优秀样本。有源层内P3HT的微观结构较差以及有源层/离子凝胶界面平坦对应于典型的神经形态行为,如增强的兴奋性突触后电流(EPSC)、双脉冲易化(PPF)和短期增强(STP)。相反,P3HT的优异微观结构和粗糙的有源层/离子凝胶界面对应于显著更高的沟道电导、增强的EPSC和PPF特性以及长期增强行为。此类器件进一步应用于神经网络的模拟,产生了良好的识别准确率。然而,过多的PMMA渗透到P3HT导电通道中会导致EPSC降低和双脉冲抑制的特征,这在有机突触晶体管中并不常见。包含第二个栅电极使制备的有机突触晶体管能够用作双输入突触逻辑门,执行各种逻辑操作并有效模拟神经调制功能。微观结构和界面工程是调节有机突触晶体管神经形态行为和推动仿生人工神经网络发展的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa9/11310909/0735e967d9f3/am4c05966_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验