Suppr超能文献

Cav2.1 通道通过依赖其与大鼠小脑颗粒细胞胞吐 Ca2+ 传感器的距离来控制多泡体释放。

Cav2.1 channels control multivesicular release by relying on their distance from exocytotic Ca2+ sensors at rat cerebellar granule cells.

机构信息

Department of Information Physiology, National Institute for Physiological Sciences, and School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8787, Japan.

出版信息

J Neurosci. 2014 Jan 22;34(4):1462-74. doi: 10.1523/JNEUROSCI.2388-13.2014.

Abstract

The concomitant release of multiple numbers of synaptic vesicles [multivesicular release (MVR)] in response to a single presynaptic action potential enhances the flexibility of synaptic transmission. However, the molecular mechanisms underlying MVR at a single CNS synapse remain unclear. Here, we show that the Cav2.1 subtype (P/Q-type) of the voltage-gated calcium channel is specifically responsible for the induction of MVR. In the rat cerebellar cortex, paired-pulse activation of granule cell (GC) ascending fibers leads not only to a facilitation of the peak amplitude (PPFamp) but also to a prolongation of the decay time (PPPdecay) of the EPSCs recorded from molecular layer interneurons. PPFamp is elicited by a transient increase in the number of released vesicles. PPPdecay is highly dependent on MVR and is caused by dual mechanisms: (1) a delayed release and (2) an extrasynaptic spillover of the GC transmitter glutamate and subsequent pooling of the glutamate among active synapses. PPPdecay was specifically suppressed by the Cav2.1 channel blocker ω-agatoxin IVA, while PPFamp responded to Cav2.2/Cav2.3 (N-type/R-type) channel blockers. The membrane-permeable slow Ca(2+) chelator EGTA-AM profoundly reduced the decay time constant (τdecay) of the second EPSC; however, it only had a negligible impact on that of the first, thereby eliminating PPPdecay. These results suggest that the distance between presynaptic Cav2.1 channels and exocytotic Ca(2+) sensors is a key determinant of MVR. By transducing presynaptic action potential firings into unique Ca(2+) signals and vesicle release profiles, Cav2.1 channels contribute to the encoding and processing of neural information.

摘要

多个突触小泡同时释放[多泡释放(MVR)]对单个突触前动作电位的反应增强了突触传递的灵活性。然而,单个中枢神经系统突触中 MVR 的分子机制尚不清楚。在这里,我们表明电压门控钙通道的 Cav2.1 亚型(P/Q 型)专门负责诱导 MVR。在大鼠小脑皮质中,颗粒细胞(GC)上升纤维的成对脉冲激活不仅导致 EPSC 峰值幅度(PPFamp)的易化,还导致从分子层中间神经元记录的 EPSC 的衰减时间(PPPdecay)延长。PPFamp 是由释放的囊泡数量的短暂增加引起的。PPPdecay 高度依赖于 MVR,由两种机制引起:(1)延迟释放;(2)GC 递质谷氨酸的突触外溢出和随后在活跃突触之间的谷氨酸聚集。Cav2.1 通道阻断剂 ω-芋螺毒素 IVA 特异性抑制 PPPdecay,而 PPFamp 对 Cav2.2/Cav2.3(N 型/R 型)通道阻断剂有反应。膜通透性慢 Ca(2+)螯合剂 EGTA-AM 深刻地降低了第二个 EPSC 的衰减时间常数(τdecay);然而,它对第一个的影响可以忽略不计,从而消除了 PPPdecay。这些结果表明,突触前 Cav2.1 通道和胞吐 Ca(2+)传感器之间的距离是 MVR 的关键决定因素。通过将突触前动作电位点火转化为独特的 Ca(2+)信号和囊泡释放谱,Cav2.1 通道有助于神经信息的编码和处理。

相似文献

6
Altered synaptic transmission at olfactory and vomeronasal nerve terminals in mice lacking N-type calcium channel Cav2.2.
Eur J Neurosci. 2014 Nov;40(10):3422-35. doi: 10.1111/ejn.12713. Epub 2014 Sep 5.
8
α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca Influx through Ca2.1 Channels.
J Neurosci. 2018 Sep 19;38(38):8277-8294. doi: 10.1523/JNEUROSCI.0511-18.2018. Epub 2018 Aug 13.
9
Miniature IPSCs in hippocampal granule cells are triggered by voltage-gated Ca2+ channels via microdomain coupling.
J Neurosci. 2012 Oct 10;32(41):14294-304. doi: 10.1523/JNEUROSCI.6104-11.2012.

引用本文的文献

1
EGTA Can Inhibit Vesicular Release in the Nanodomain of Single Ca Channels.
Front Synaptic Neurosci. 2019 Oct 1;11:26. doi: 10.3389/fnsyn.2019.00026. eCollection 2019.
4
New Cav2 calcium channel gating modifiers with agonist activity and therapeutic potential to treat neuromuscular disease.
Neuropharmacology. 2018 Mar 15;131:176-189. doi: 10.1016/j.neuropharm.2017.12.022. Epub 2017 Dec 12.
5
Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.
J Physiol. 2017 Jan 1;595(1):165-178. doi: 10.1113/JP272292. Epub 2016 Sep 15.
8
Single granule cells excite Golgi cells and evoke feedback inhibition in the cochlear nucleus.
J Neurosci. 2015 Mar 18;35(11):4741-50. doi: 10.1523/JNEUROSCI.3665-14.2015.
9
Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis.
J Neurosci. 2014 Jun 11;34(24):8151-63. doi: 10.1523/JNEUROSCI.4415-13.2014.

本文引用的文献

1
Control of neuronal voltage-gated calcium ion channels from RNA to protein.
Trends Neurosci. 2013 Oct;36(10):598-609. doi: 10.1016/j.tins.2013.06.008. Epub 2013 Jul 30.
4
Calcium channels and short-term synaptic plasticity.
J Biol Chem. 2013 Apr 12;288(15):10742-9. doi: 10.1074/jbc.R112.411645. Epub 2013 Feb 11.
5
Nanodomain coupling at an excitatory cortical synapse.
Curr Biol. 2013 Feb 4;23(3):244-9. doi: 10.1016/j.cub.2012.12.007. Epub 2012 Dec 27.
7
Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14657-62. doi: 10.1073/pnas.1211971109. Epub 2012 Aug 20.
8
Coactivation of multiple tightly coupled calcium channels triggers spontaneous release of GABA.
Nat Neurosci. 2012 Sep;15(9):1195-7. doi: 10.1038/nn.3162. Epub 2012 Jul 29.
10
Ca(2+) channels and transmitter release at the active zone.
Cell Calcium. 2012 Sep-Oct;52(3-4):199-207. doi: 10.1016/j.ceca.2012.04.011. Epub 2012 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验