Inoue Lurdes Y T, Etzioni Ruth, Morrell Christopher, Müller Peter
Department of Biostatistics, University of Washington, F-600 Health Sciences Building, Box 357232, Seattle, WA, 98195.
Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, MP 665, Box 19024, Seattle, WA, 98109.
J Am Stat Assoc. 2008;103(481):259-270. doi: 10.1198/016214507000000356.
In this paper we propose a Bayesian natural history model for disease progression based on the joint modeling of longitudinal biomarker levels, age at clinical detection of disease and disease status at diagnosis. We establish a link between the longitudinal responses and the natural history of the disease by using an underlying latent disease process which describes the onset of the disease and models the transition to an advanced stage of the disease as dependent on the biomarker levels. We apply our model to the data from the Baltimore Longitudinal Study of Aging on prostate specific antigen (PSA) to investigate the natural history of prostate cancer.
在本文中,我们基于纵向生物标志物水平、疾病临床检测时的年龄以及诊断时的疾病状态的联合建模,提出了一种用于疾病进展的贝叶斯自然史模型。我们通过使用一个潜在的潜伏疾病过程来建立纵向反应与疾病自然史之间的联系,该过程描述了疾病的发作,并将向疾病晚期的转变建模为依赖于生物标志物水平。我们将我们的模型应用于巴尔的摩衰老纵向研究中关于前列腺特异性抗原(PSA)的数据,以研究前列腺癌的自然史。