Suppr超能文献

利用纵向标志物对疾病进展进行建模。

Modeling Disease Progression with Longitudinal Markers.

作者信息

Inoue Lurdes Y T, Etzioni Ruth, Morrell Christopher, Müller Peter

机构信息

Department of Biostatistics, University of Washington, F-600 Health Sciences Building, Box 357232, Seattle, WA, 98195.

Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, MP 665, Box 19024, Seattle, WA, 98109.

出版信息

J Am Stat Assoc. 2008;103(481):259-270. doi: 10.1198/016214507000000356.

Abstract

In this paper we propose a Bayesian natural history model for disease progression based on the joint modeling of longitudinal biomarker levels, age at clinical detection of disease and disease status at diagnosis. We establish a link between the longitudinal responses and the natural history of the disease by using an underlying latent disease process which describes the onset of the disease and models the transition to an advanced stage of the disease as dependent on the biomarker levels. We apply our model to the data from the Baltimore Longitudinal Study of Aging on prostate specific antigen (PSA) to investigate the natural history of prostate cancer.

摘要

在本文中,我们基于纵向生物标志物水平、疾病临床检测时的年龄以及诊断时的疾病状态的联合建模,提出了一种用于疾病进展的贝叶斯自然史模型。我们通过使用一个潜在的潜伏疾病过程来建立纵向反应与疾病自然史之间的联系,该过程描述了疾病的发作,并将向疾病晚期的转变建模为依赖于生物标志物水平。我们将我们的模型应用于巴尔的摩衰老纵向研究中关于前列腺特异性抗原(PSA)的数据,以研究前列腺癌的自然史。

相似文献

1
Modeling Disease Progression with Longitudinal Markers.
J Am Stat Assoc. 2008;103(481):259-270. doi: 10.1198/016214507000000356.
3
Joint analysis of left-censored longitudinal biomarker and binary outcome via latent class modeling.
Stat Med. 2018 Jun 15;37(13):2162-2173. doi: 10.1002/sim.7642. Epub 2018 Apr 2.
4
Joint Hidden Markov Model for Longitudinal and Time-to-Event Data with Latent Variables.
Multivariate Behav Res. 2022 Mar-May;57(2-3):441-457. doi: 10.1080/00273171.2020.1865864. Epub 2021 Jan 7.
5
Natural history of changes in prostate specific antigen in early stage prostate cancer.
J Urol. 1994 Nov;152(5 Pt 2):1743-8. doi: 10.1016/s0022-5347(17)32375-3.
6
A two-stage model in a Bayesian framework to estimate a survival endpoint in the presence of confounding by indication.
Stat Methods Med Res. 2018 Apr;27(4):1271-1281. doi: 10.1177/0962280216660127. Epub 2016 Sep 1.
7
Bayesian latent time joint mixed effect models for multicohort longitudinal data.
Stat Methods Med Res. 2019 Mar;28(3):835-845. doi: 10.1177/0962280217737566. Epub 2017 Nov 23.
8
Approximate Bayesian inference for joint linear and partially linear modeling of longitudinal zero-inflated count and time to event data.
Stat Methods Med Res. 2021 Jun;30(6):1484-1501. doi: 10.1177/09622802211002868. Epub 2021 Apr 19.
10
Bayesian piecewise mixture model for racial disparity in prostate cancer progression.
Comput Stat Data Anal. 2012 Feb 1;56(2):362-369. doi: 10.1016/j.csda.2011.07.011.

引用本文的文献

1
Sequential Bayesian Registration for Functional Data.
Stat Comput. 2025;35(4):108. doi: 10.1007/s11222-025-10640-8. Epub 2025 May 27.
2
Economic evaluation of prostate cancer risk assessment methods: A cost-effectiveness analysis using population data.
Cancer Med. 2023 Oct;12(19):20106-20118. doi: 10.1002/cam4.6587. Epub 2023 Sep 23.
3
Repeated measures discriminant analysis using multivariate generalized estimation equations.
Stat Methods Med Res. 2022 Apr;31(4):646-657. doi: 10.1177/09622802211032705. Epub 2021 Dec 13.
4
A Bivariate Mixed-Effects Location-Scale Model with application to Ecological Momentary Assessment (EMA) data.
Health Serv Outcomes Res Methodol. 2014 Dec;14(4):194-212. doi: 10.1007/s10742-014-0126-9.
5
Screening for prostate cancer in the US? Reduce the harms and keep the benefit.
Int J Cancer. 2015 Apr 1;136(7):1600-7. doi: 10.1002/ijc.29136. Epub 2014 Sep 1.
7
Evaluation of new technologies for cancer control based on population trends in disease incidence and mortality.
J Natl Cancer Inst Monogr. 2013;2013(46):117-23. doi: 10.1093/jncimonographs/lgt010.
8
Deriving benefit of early detection from biomarker-based prognostic models.
Biostatistics. 2013 Jan;14(1):15-27. doi: 10.1093/biostatistics/kxs018. Epub 2012 Jun 22.
9
Screening for prostate cancer using multivariate mixed-effects models.
J Appl Stat. 2012 Jun 1;39(6):1151-1175. doi: 10.1080/02664763.2011.644523.
10
What if I don't treat my PSA-detected prostate cancer? Answers from three natural history models.
Cancer Epidemiol Biomarkers Prev. 2011 May;20(5):740-50. doi: 10.1158/1055-9965.EPI-10-0718.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
2
A natural history model of stage progression applied to breast cancer.
Stat Med. 2007 Feb 10;26(3):581-95. doi: 10.1002/sim.2550.
3
Combining longitudinal studies of PSA.
Biostatistics. 2004 Jul;5(3):483-500. doi: 10.1093/biostatistics/5.3.483.
5
Multistage carcinogenesis and the incidence of colorectal cancer.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15095-100. doi: 10.1073/pnas.222118199. Epub 2002 Nov 1.
6
Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends.
J Natl Cancer Inst. 2002 Jul 3;94(13):981-90. doi: 10.1093/jnci/94.13.981.
7
Modeling and optimization in early detection programs with a single exam.
Biometrics. 2002 Mar;58(1):30-6. doi: 10.1111/j.0006-341x.2002.00030.x.
9
Estimation and prediction for cancer screening models using deconvolution and smoothing.
Biometrics. 2001 Jun;57(2):389-95. doi: 10.1111/j.0006-341x.2001.00389.x.
10
Modeling cancer detection: tumor size as a source of information on unobservable stages of carcinogenesis.
Math Biosci. 2001 Jun;171(2):113-42. doi: 10.1016/s0025-5564(01)00058-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验