Suppr超能文献

功能数据的序贯贝叶斯配准

Sequential Bayesian Registration for Functional Data.

作者信息

Kim Yoonji, Chkrebtii Oksana A, Kurtek Sebastian A

机构信息

Department of Statistics, The Ohio State University, 1958 Neil Avenue, Columbus, Ohio 43210 USA.

出版信息

Stat Comput. 2025;35(4):108. doi: 10.1007/s11222-025-10640-8. Epub 2025 May 27.

Abstract

In many modern applications, discretely-observed data may be naturally understood as a set of functions. Functional data often exhibit two confounded sources of variability: amplitude (-axis) and phase (-axis). The extraction of amplitude and phase, a process known as registration, is essential in exploring the underlying structure of functional data in a variety of areas, from environmental monitoring to medical imaging. Critically, such data are often gathered sequentially with new functional observations arriving over time. Despite this, existing registration procedures do not sequentially update inference based on the new data, requiring model refitting. To address these challenges, we introduce a Bayesian framework for sequential registration of functional data, which updates statistical inference as new sets of functions are assimilated. This Bayesian model-based sequential learning approach utilizes sequential Monte Carlo sampling to recursively update the alignment of observed functions while accounting for associated uncertainty. Distributed computing significantly reduces computational cost relative to refitting the model using an iterative method such as Markov chain Monte Carlo on the full data. Simulation studies and comparisons reveal that the proposed approach performs well even when the target posterior distribution has a challenging structure. We apply the proposed method to three real datasets: (1) functions of annual drought intensity near Kaweah River in California, (2) annual sea surface salinity functions near Null Island, and (3) a sequence of repeated patterns in electrocardiogram signals.

摘要

在许多现代应用中,离散观测数据可自然地理解为一组函数。函数型数据通常表现出两种相互混淆的变异性来源:幅度(y轴)和相位(x轴)。幅度和相位的提取,即配准过程,对于探索从环境监测到医学成像等各个领域中函数型数据的潜在结构至关重要。关键的是,此类数据通常是随着时间推移新的函数观测值陆续收集而来的。尽管如此,现有的配准程序并不会根据新数据依次更新推断,而是需要重新拟合模型。为应对这些挑战,我们引入了一种用于函数型数据序列配准的贝叶斯框架,该框架在新的函数集被纳入时更新统计推断。这种基于贝叶斯模型的序列学习方法利用序列蒙特卡罗采样来递归更新观测函数的对齐,同时考虑相关的不确定性。与使用马尔可夫链蒙特卡罗等迭代方法在完整数据上重新拟合模型相比,分布式计算显著降低了计算成本。模拟研究和比较表明,即使目标后验分布具有具有挑战性的结构,所提出的方法也表现良好。我们将所提出的方法应用于三个真实数据集:(1)加利福尼亚州卡韦阿河附近年度干旱强度的函数,(2)零岛附近年度海表盐度函数,以及(3)心电图信号中的一系列重复模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2555/12116714/baef42039ae1/11222_2025_10640_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验