文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物电信号调节斑马鱼鳍的大小。

Bioelectric signaling regulates size in zebrafish fins.

机构信息

Max Planck Institute for Developmental Biology, Tübingen, Germany.

Orthopedic Research Laboratories, Boston Children's Hospital; Department of Genetics, Harvard Medical School, Enders, Massachusetts, United States of America.

出版信息

PLoS Genet. 2014 Jan;10(1):e1004080. doi: 10.1371/journal.pgen.1004080. Epub 2014 Jan 16.


DOI:10.1371/journal.pgen.1004080
PMID:24453984
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3894163/
Abstract

The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K(+)) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K(+) conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K(+) ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K(+) channels in the regulation of allometric scaling and coordination of growth in the zebrafish.

摘要

在动物发育过程中,附肢或器官的大小与整个身体的大小之间的比例关系受到严格调节。如果结构的生长速度与身体其他部分不同,则此过程称为异速生长。斑马鱼另一种长鳍(alf)突变体表现出异速生长,导致鳍和触须成比例增大。我们利用这种突变体来研究脊椎动物的大小调节。在这里,我们表明 alf 突变体携带编码双孔域钾(K(+))通道的 kcnk5b 基因的功能获得性突变。在非洲爪蟾卵母细胞中的电生理分析表明,这些突变导致通道的 K(+)电导增加,并导致细胞超极化。此外,体转染实验表明,kcnk5b 在鳍和触须的间质中局部发挥作用,以指定附肢的大小。最后,我们表明通道需要传导 K(+)离子的能力来增加这些结构的大小。我们的结果为生物电信号通过 K(+)通道在调节斑马鱼的异速生长和生长协调中的作用提供了证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/a28ce42200fd/pgen.1004080.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/080e0e379daa/pgen.1004080.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/55980002c07a/pgen.1004080.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/119c1e75a687/pgen.1004080.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/b7ef3c34ecfe/pgen.1004080.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/f1de284a6ef1/pgen.1004080.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/a28ce42200fd/pgen.1004080.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/080e0e379daa/pgen.1004080.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/55980002c07a/pgen.1004080.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/119c1e75a687/pgen.1004080.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/b7ef3c34ecfe/pgen.1004080.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/f1de284a6ef1/pgen.1004080.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2c/3894163/a28ce42200fd/pgen.1004080.g006.jpg

相似文献

[1]
Bioelectric signaling regulates size in zebrafish fins.

PLoS Genet. 2014-1-16

[2]
A calcineurin-mediated scaling mechanism that controls a K-leak channel to regulate morphogen and growth factor transcription.

Elife. 2021-4-8

[3]
Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin.

Sci Rep. 2018-7-10

[4]
Integrated K+ channel and K+Cl- cotransporter functions are required for the coordination of size and proportion during development.

Dev Biol. 2019-8-28

[5]
The scale of zebrafish pectoral fin buds is determined by intercellular K+ levels and consequent Ca2+-mediated signaling via retinoic acid regulation of Rcan2 and Kcnk5b.

PLoS Biol. 2024-3-25

[6]
Potassium Channel-Associated Bioelectricity of the Dermomyotome Determines Fin Patterning in Zebrafish.

Genetics. 2020-8

[7]
Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins.

Dev Cell. 2014-2-20

[8]
Dynamics of actinotrichia regeneration in the adult zebrafish fin.

Dev Biol. 2018-1-15

[9]
longfin causes cis-ectopic expression of the kcnh2a ether-a-go-go K+ channel to autonomously prolong fin outgrowth.

Development. 2021-6-1

[10]
Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish.

J Biol Chem. 2016-6-10

引用本文的文献

[1]
Caudal fin shape imprinted during late zebrafish embryogenesis is re-patterned by the Sonic hedgehog pathway.

PLoS Biol. 2025-8-25

[2]
The geometry of life: testing the scaling of whole-organism surface area and volume using sharks.

R Soc Open Sci. 2025-6-18

[3]
Bioelectricity is a universal multifaced signaling cue in living organisms.

Mol Biol Cell. 2025-2-1

[4]
The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development.

Development. 2024-12-15

[5]
Depolarization induces calcium-dependent BMP4 release from mouse embryonic palate mesenchymal cells.

Nat Commun. 2024-11-12

[6]
Hallmarks of regeneration.

Cell Stem Cell. 2024-9-5

[7]
Phylogenomic analyses of all species of swordtail fishes (genus Xiphophorus) show that hybridization preceded speciation.

Nat Commun. 2024-8-4

[8]
Adult caudal fin shape is imprinted in the embryonic fin fold.

bioRxiv. 2024-7-19

[9]
Growth patterns of caudal fin rays are informed by both external signals from the regenerating organ and remembered identity autonomous to the local tissue.

Dev Biol. 2024-11

[10]
Genetic regulation of injury-induced heterotopic ossification in adult zebrafish.

Dis Model Mech. 2024-5-1

本文引用的文献

[1]
Mutations affecting pigmentation and shape of the adult zebrafish.

Dev Genes Evol. 1996-11

[2]
Membrane potential and cancer progression.

Front Physiol. 2013-7-17

[3]
Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo.

Biol Open. 2013-1-17

[4]
Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model.

Dis Model Mech. 2013-2-1

[5]
The Hippo pathway and human cancer.

Nat Rev Cancer. 2013-3-7

[6]
A role for two-pore potassium (K2P) channels in endometrial epithelial function.

J Cell Mol Med. 2013-1-11

[7]
Bioelectric signaling regulates head and organ size during planarian regeneration.

Development. 2013-1-15

[8]
An inwardly rectifying K+ channel is required for patterning.

Development. 2012-10

[9]
Polyamine sensitivity of gap junctions is required for skin pattern formation in zebrafish.

Sci Rep. 2012-6-26

[10]
Organ size control by Hippo and TOR pathways.

Curr Biol. 2012-5-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索