Max Planck Institute for Developmental Biology, Tübingen, Germany.
Orthopedic Research Laboratories, Boston Children's Hospital; Department of Genetics, Harvard Medical School, Enders, Massachusetts, United States of America.
PLoS Genet. 2014 Jan;10(1):e1004080. doi: 10.1371/journal.pgen.1004080. Epub 2014 Jan 16.
The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K(+)) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K(+) conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K(+) ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K(+) channels in the regulation of allometric scaling and coordination of growth in the zebrafish.
在动物发育过程中,附肢或器官的大小与整个身体的大小之间的比例关系受到严格调节。如果结构的生长速度与身体其他部分不同,则此过程称为异速生长。斑马鱼另一种长鳍(alf)突变体表现出异速生长,导致鳍和触须成比例增大。我们利用这种突变体来研究脊椎动物的大小调节。在这里,我们表明 alf 突变体携带编码双孔域钾(K(+))通道的 kcnk5b 基因的功能获得性突变。在非洲爪蟾卵母细胞中的电生理分析表明,这些突变导致通道的 K(+)电导增加,并导致细胞超极化。此外,体转染实验表明,kcnk5b 在鳍和触须的间质中局部发挥作用,以指定附肢的大小。最后,我们表明通道需要传导 K(+)离子的能力来增加这些结构的大小。我们的结果为生物电信号通过 K(+)通道在调节斑马鱼的异速生长和生长协调中的作用提供了证据。
PLoS Genet. 2014-1-16
Dev Cell. 2014-2-20
Dev Biol. 2018-1-15
J Biol Chem. 2016-6-10
R Soc Open Sci. 2025-6-18
Mol Biol Cell. 2025-2-1
Cell Stem Cell. 2024-9-5
bioRxiv. 2024-7-19
Dis Model Mech. 2024-5-1
Dev Genes Evol. 1996-11
Front Physiol. 2013-7-17
Nat Rev Cancer. 2013-3-7
J Cell Mol Med. 2013-1-11
Development. 2013-1-15
Development. 2012-10
Curr Biol. 2012-5-7