Suppr超能文献

流动下的生命:一种新型微流控装置,用于评估抗生物膜技术。

Life under flow: A novel microfluidic device for the assessment of anti-biofilm technologies.

机构信息

National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.

Bioengineering Sciences Group, Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.

出版信息

Biomicrofluidics. 2013 Dec 23;7(6):64118. doi: 10.1063/1.4850796.

Abstract

In the current study, we have developed and fabricated a novel lab-on-a-chip device for the investigation of biofilm responses, such as attachment kinetics and initial biofilm formation, to different hydrodynamic conditions. The microfluidic flow channels are designed using computational fluid dynamic simulations so as to have a pre-defined, homogeneous wall shear stress in the channels, ranging from 0.03 to 4.30 Pa, which are relevant to in-service conditions on a ship hull, as well as other man-made marine platforms. Temporal variations of biofilm formation in the microfluidic device were assessed using time-lapse microscopy, nucleic acid staining, and confocal laser scanning microscopy (CLSM). Differences in attachment kinetics were observed with increasing shear stress, i.e., with increasing shear stress there appeared to be a delay in bacterial attachment, i.e., at 55, 120, 150, and 155 min for 0.03, 0.60, 2.15, and 4.30 Pa, respectively. CLSM confirmed marked variations in colony architecture, i.e.,: (i) lower shear stresses resulted in biofilms with distinctive morphologies mainly characterised by mushroom-like structures, interstitial channels, and internal voids, and (ii) for the higher shear stresses compact clusters with large interspaces between them were formed. The key advantage of the developed microfluidic device is the combination of three architectural features in one device, i.e., an open-system design, channel replication, and multiple fully developed shear stresses.

摘要

在当前的研究中,我们开发并制造了一种新型的片上实验室设备,用于研究生物膜对不同流体动力学条件的响应,如附着动力学和初始生物膜形成。微流道采用计算流体动力学模拟设计,以在通道中产生预定的、均匀的壁面剪切应力,范围为 0.03 至 4.30 Pa,这与船体以及其他人造海洋平台上的服役条件相关。使用延时显微镜、核酸染色和共聚焦激光扫描显微镜(CLSM)评估微流控装置中生物膜形成的时间变化。随着剪切应力的增加,观察到附着动力学的差异,即随着剪切应力的增加,细菌附着似乎会延迟,即在 0.03、0.60、2.15 和 4.30 Pa 时,分别为 55、120、150 和 155 分钟。CLSM 证实了菌落结构的明显变化,即:(i)较低的剪切应力导致生物膜具有独特的形态,主要特征为蘑菇状结构、间质通道和内部空隙;(ii)对于较高的剪切应力,形成了具有大间隔的紧密集群。所开发的微流控装置的主要优势在于在一个装置中结合了三个结构特征,即开放式设计、通道复制和多个完全发展的剪切应力。

相似文献

1
Life under flow: A novel microfluidic device for the assessment of anti-biofilm technologies.
Biomicrofluidics. 2013 Dec 23;7(6):64118. doi: 10.1063/1.4850796.
4
A Microfluidic-Based Investigation of Bacterial Attachment in Ureteral Stents.
Micromachines (Basel). 2020 Apr 13;11(4):408. doi: 10.3390/mi11040408.
7
Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp.
Langmuir. 2017 Feb 28;33(8):2041-2049. doi: 10.1021/acs.langmuir.6b03889. Epub 2017 Feb 14.
9
Distinctive stages and strain variations of A. baumannii biofilm development under shear flow.
J Wound Care. 2013 Apr;22(4):173-4, 176-8, 180-1. doi: 10.12968/jowc.2013.22.4.173.
10
Long range microfluidic shear device for cellular mechanotransduction studies.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3209-12. doi: 10.1109/EMBC.2015.7319075.

引用本文的文献

1
The effect of the dual scale surface topography of a surface-modified titanium alloy on its bactericidal activity against .
RSC Adv. 2025 Mar 6;15(9):7209-7223. doi: 10.1039/d4ra07843h. eCollection 2025 Feb 26.
2
Preferential adhesion of bacterial cells onto top- and bottom-mounted nanostructured surfaces under flow conditions.
Nanoscale Adv. 2023 Oct 12;5(23):6458-6472. doi: 10.1039/d3na00581j. eCollection 2023 Nov 21.
4
Development of Antifouling Strategies for Marine Applications.
Microorganisms. 2023 Jun 13;11(6):1568. doi: 10.3390/microorganisms11061568.
5
Bactericidal Efficacy of Nanostructured Surfaces Increases under Flow Conditions.
ACS Omega. 2022 Nov 4;7(45):41711-41722. doi: 10.1021/acsomega.2c05828. eCollection 2022 Nov 15.
7
Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective.
RSC Adv. 2021 Jan 13;11(3):1883-1900. doi: 10.1039/d0ra08878a. eCollection 2021 Jan 4.
8
Microsystems for biofilm characterization and sensing - A review.
Biofilm. 2019 Dec 18;2:100015. doi: 10.1016/j.bioflm.2019.100015. eCollection 2020 Dec.
10
Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge.
Microb Biotechnol. 2020 May;13(3):613-628. doi: 10.1111/1751-7915.13471. Epub 2019 Aug 7.

本文引用的文献

2
Bacterial aggregation and biofilm formation in a vortical flow.
Biomicrofluidics. 2012 Dec 12;6(4):44114. doi: 10.1063/1.4771407. eCollection 2012.
3
Marine biofilms on artificial surfaces: structure and dynamics.
Environ Microbiol. 2013 Nov;15(11):2879-93. doi: 10.1111/1462-2920.12186. Epub 2013 Jul 19.
4
Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
Lab Chip. 2013 May 21;13(10):1846-9. doi: 10.1039/c3lc40802g. Epub 2013 Apr 11.
5
A web of streamers: biofilm formation in a porous microfluidic device.
Lab Chip. 2012 Dec 21;12(24):5133-7. doi: 10.1039/c2lc40815e.
6
The second skin: ecological role of epibiotic biofilms on marine organisms.
Front Microbiol. 2012 Aug 23;3:292. doi: 10.3389/fmicb.2012.00292. eCollection 2012.
9
The influence of biofilms on skin friction drag.
Biofouling. 2000;15(1-3):129-39. doi: 10.1080/08927010009386304.
10
Micro total analysis systems for cell biology and biochemical assays.
Anal Chem. 2012 Jan 17;84(2):516-40. doi: 10.1021/ac202611x. Epub 2011 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验