Suppr超能文献

通过基于荧光的冰面亲和力测定抗冻蛋白的冰结合平面。

Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

作者信息

Basu Koli, Garnham Christopher P, Nishimiya Yoshiyuki, Tsuda Sakae, Braslavsky Ido, Davies Peter

机构信息

Department of Biomedical and Molecular Sciences, Queen's University.

出版信息

J Vis Exp. 2014 Jan 15(83):e51185. doi: 10.3791/51185.

Abstract

Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

摘要

抗冻蛋白(AFPs)在多种耐寒生物中表达,以防止或减缓体内冰晶生长。AFPs通过其冰结合表面与特定的冰面结合。基于荧光的冰面亲和力(FIPA)分析是一种用于确定AFPs结合的冰面的改良技术。FIPA基于最初用于确定AFP结合冰面的冰蚀刻方法。它在缩短的实验时间内产生更清晰的图像。在FIPA分析中,AFPs用嵌合标签或共价染料进行荧光标记,然后缓慢掺入预先形成半球形并定向以确定a轴和c轴的宏观单晶冰中。在紫外线下对结合了AFP的冰半球进行成像,使用滤光片阻挡非特异性光以可视化结合了AFP的平面。AFPs的荧光标记允许实时监测AFP吸附到冰中。已发现这些标签不会影响AFPs结合的平面。FIPA分析还引入了在同一单晶冰上结合不止一种不同标记的AFP的选项,以帮助区分它们的结合平面。FIPA的这些应用有助于推动我们对AFPs如何与冰结合以阻止其生长以及为何许多产生AFP的生物表达多种AFP异构体的理解。

相似文献

2
3
When are antifreeze proteins in solution essential for ice growth inhibition?
Langmuir. 2015 Jun 2;31(21):5805-11. doi: 10.1021/acs.langmuir.5b00345. Epub 2015 May 18.
7
Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces.
Biophys J. 2007 May 15;92(10):3663-73. doi: 10.1529/biophysj.106.096297. Epub 2007 Feb 26.
8
Superheating of ice crystals in antifreeze protein solutions.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5423-8. doi: 10.1073/pnas.0909456107. Epub 2010 Mar 9.
9
New insights into ice growth and melting modifications by antifreeze proteins.
J R Soc Interface. 2012 Dec 7;9(77):3249-59. doi: 10.1098/rsif.2012.0388. Epub 2012 Jul 11.
10

引用本文的文献

1
Identification of ice-binding proteins from Raphanus sativus and application in frozen dough.
NPJ Sci Food. 2025 Apr 24;9(1):58. doi: 10.1038/s41538-025-00420-z.
2
Molecular basis for inhibition of methane clathrate growth by a deep subsurface bacterial protein.
PNAS Nexus. 2023 Aug 14;2(8):pgad268. doi: 10.1093/pnasnexus/pgad268. eCollection 2023 Aug.
6
Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
Biomolecules. 2020 Dec 9;10(12):1649. doi: 10.3390/biom10121649.
9
Peptidic Antifreeze Materials: Prospects and Challenges.
Int J Mol Sci. 2019 Oct 17;20(20):5149. doi: 10.3390/ijms20205149.

本文引用的文献

1
Crystal structure of an insect antifreeze protein and its implications for ice binding.
J Biol Chem. 2013 Apr 26;288(17):12295-304. doi: 10.1074/jbc.M113.450973. Epub 2013 Mar 12.
2
Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1309-14. doi: 10.1073/pnas.1213603110. Epub 2013 Jan 8.
3
Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.
PLoS One. 2012;7(11):e48805. doi: 10.1371/journal.pone.0048805. Epub 2012 Nov 7.
4
Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice.
FEBS Lett. 2012 Nov 2;586(21):3876-81. doi: 10.1016/j.febslet.2012.09.017. Epub 2012 Sep 24.
5
New insights into ice growth and melting modifications by antifreeze proteins.
J R Soc Interface. 2012 Dec 7;9(77):3249-59. doi: 10.1098/rsif.2012.0388. Epub 2012 Jul 11.
6
Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9360-5. doi: 10.1073/pnas.1121607109. Epub 2012 May 29.
7
Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
J Mol Biol. 2012 Mar 9;416(5):713-24. doi: 10.1016/j.jmb.2012.01.032. Epub 2012 Jan 28.
8
Novel dimeric β-helical model of an ice nucleation protein with bridged active sites.
BMC Struct Biol. 2011 Sep 27;11:36. doi: 10.1186/1472-6807-11-36.
9
Algal ice-binding proteins change the structure of sea ice.
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):E198. doi: 10.1073/pnas.1106288108. Epub 2011 Jun 2.
10
Anchored clathrate waters bind antifreeze proteins to ice.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7363-7. doi: 10.1073/pnas.1100429108. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验