Dane Martijn J C, Khairoun Meriem, Lee Dae Hyun, van den Berg Bernard M, Eskens Bart J M, Boels Margien G S, van Teeffelen Jurgen W G E, Rops Angelique L W M M, van der Vlag Johan, van Zonneveld Anton Jan, Reinders Marlies E J, Vink Hans, Rabelink Ton J
Department of Nephrology, Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands;, †Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands, ‡Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
Clin J Am Soc Nephrol. 2014 Apr;9(4):698-704. doi: 10.2215/CJN.08160813. Epub 2014 Jan 23.
ESRD is accompanied by endothelial dysfunction. Because the endothelial glycocalyx (endothelial surface layer) governs interactions between flowing blood and the vessel wall, perturbation could influence disease progression. This study used a novel noninvasive sidestream-darkfield imaging method, which measures the accessibility of red blood cells to the endothelial surface layer in the microcirculation (perfused boundary region), to investigate whether renal function is associated with endothelial surface layer dimensions.
DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Perfused boundary region was measured in control participants (n=10), patients with ESRD (n=23), participants with normal kidney function after successful living donor kidney transplantation (n=12), and patients who developed interstitial fibrosis/tubular atrophy after kidney transplantation (n=10). In addition, the endothelial activation marker angiopoietin-2 and shed endothelial surface layer components syndecan-1 and soluble thrombomodulin were measured using ELISA.
Compared with healthy controls (1.82 ± 0.16 µm), ESRD patients had a larger perfused boundary region (+0.23; 95% confidence interval, 0.46 to <0.01; P<0.05), which signifies loss of endothelial surface layer dimensions. This large perfused boundary region was accompanied by higher circulating levels of syndecan-1 (+57.71; 95% confidence interval, 17.38 to 98.04; P<0.01) and soluble thrombomodulin (+12.88; 95% confidence interval, 0.29 to 25.46; P<0.001). After successful transplantation, the perfused boundary region was indistinguishable from healthy controls (without elevated levels of soluble thrombomodulin or syndecan-1). In contrast, however, patients who developed interstitial fibrosis and tubular atrophy showed a large perfused boundary region (+0.36; 95% confidence interval, 0.09 to 0.63; P<0.01) and higher levels of endothelial activation markers. In addition, a significant correlation between perfused boundary region, angiopoietin-2, and eGFR was observed (perfused boundary region versus GFR: Spearman's ρ=0.31; P<0.05; perfused boundary region versus angiopoietin-2: Spearman's ρ=-0.33; P<0.05).
Reduced renal function is strongly associated with low endothelial surface layer dimensions. After successful kidney transplantation, the endothelial surface layer is indistinguishable from control.
终末期肾病(ESRD)伴有内皮功能障碍。由于内皮糖萼(内皮表面层)调控着流动血液与血管壁之间的相互作用,其扰动可能会影响疾病进展。本研究采用一种新型非侵入性侧流暗场成像方法,该方法可测量红细胞在微循环(灌注边界区域)中与内皮表面层的可及性,以研究肾功能是否与内皮表面层尺寸相关。
设计、地点、参与者及测量指标:在对照组参与者(n = 10)、ESRD患者(n = 23)、活体供肾移植成功后肾功能正常的参与者(n = 12)以及肾移植后发生间质纤维化/肾小管萎缩的患者(n = 10)中测量灌注边界区域。此外,采用酶联免疫吸附测定法(ELISA)测量内皮激活标志物血管生成素-2以及脱落的内皮表面层成分硫酸乙酰肝素蛋白聚糖-1和可溶性血栓调节蛋白。
与健康对照组(1.82±0.16 µm)相比,ESRD患者的灌注边界区域更大(增加0.23;95%置信区间为0.46至<0.01;P<0.05),这表明内皮表面层尺寸减小。这种较大的灌注边界区域伴随着硫酸乙酰肝素蛋白聚糖-1循环水平升高(增加57.71;95%置信区间为17.38至98.04;P<0.01)和可溶性血栓调节蛋白循环水平升高(增加12.88;95%置信区间为0.29至25.46;P<0.001)。肾移植成功后,灌注边界区域与健康对照组无差异(可溶性血栓调节蛋白或硫酸乙酰肝素蛋白聚糖-1水平未升高)。然而,相比之下,发生间质纤维化和肾小管萎缩的患者显示出较大的灌注边界区域(增加0.36;95%置信区间为0.09至0.63;P<0.01)和更高水平的内皮激活标志物。此外,观察到灌注边界区域、血管生成素-2和估算肾小球滤过率(eGFR)之间存在显著相关性(灌注边界区域与肾小球滤过率:Spearman秩相关系数ρ = 0.31;P<0.05;灌注边界区域与血管生成素-2:Spearman秩相关系数ρ = -0.33;P<0.05)。
肾功能降低与内皮表面层尺寸减小密切相关。肾移植成功后,内皮表面层与对照组无差异。