Suppr超能文献

使用动态布朗桥运动模型来测量栖息地选择的时间模式。

Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.

作者信息

Byrne Michael E, Clint McCoy J, Hinton Joseph W, Chamberlain Michael J, Collier Bret A

机构信息

Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA.

School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA.

出版信息

J Anim Ecol. 2014 Sep;83(5):1234-43. doi: 10.1111/1365-2656.12205. Epub 2014 Mar 6.

Abstract

Accurately describing animal space use is vital to understanding how wildlife use habitat. Improvements in GPS technology continue to facilitate collection of telemetry data at high spatial and temporal resolutions. Application of the recently introduced dynamic Brownian bridge movement model (dBBMM) to such data is promising as the method explicitly incorporates the behavioural heterogeneity of a movement path into the estimated utilization distribution (UD). Utilization distributions defining space use are normally estimated for time-scales ranging from weeks to months, obscuring much of the fine-scale information available from high-volume GPS data sets. By accounting for movement heterogeneity, the dBBMM provides a rigorous, behaviourally based estimate of space use between each set of relocations. Focusing on UDs generated between individual sets of locations allows us to quantify fine-scale circadian variation in habitat use. We used the dBBMM to estimate UDs bounding individual time steps for three terrestrial species with different life histories to illustrate how the method can be used to identify fine-scale variations in habitat use. We also demonstrate how dBBMMs can be used to characterize circadian patterns of habitat selection and link fine-scale patterns of habitat use to behaviour. We observed circadian patterns of habitat use that varied seasonally for a white-tailed deer (Odocoileus virginianus) and coyote (Canis latrans). We found seasonal patterns in selection by the white-tailed deer and were able to link use of conifer forests and agricultural fields to behavioural state of the coyote. Additionally, we were able to quantify the date in which a Rio Grande wild turkey (Meleagris gallopavo intermedia) initiated laying as well as when during the day, she was most likely to visit the nest site to deposit eggs. The ability to quantify circadian patterns of habitat use may have important implications for research and management of wildlife. Additionally, the ability to link such patterns to behaviour may aid in the development of mechanistic models of habitat selection.

摘要

准确描述动物的空间利用对于理解野生动物如何利用栖息地至关重要。全球定位系统(GPS)技术的进步持续推动着高空间和时间分辨率遥测数据的收集。最近引入的动态布朗桥运动模型(dBBMM)应用于此类数据很有前景,因为该方法明确将运动路径的行为异质性纳入估计的利用分布(UD)中。定义空间利用的利用分布通常是针对从数周到数月的时间尺度进行估计的,这掩盖了大量来自高容量GPS数据集的精细尺度信息。通过考虑运动异质性,dBBMM提供了每组重新定位之间基于行为的严格空间利用估计。关注个体位置集之间生成的利用分布使我们能够量化栖息地利用的精细尺度昼夜变化。我们使用dBBMM估计三种具有不同生活史的陆生物种个体时间步长的利用分布,以说明该方法如何用于识别栖息地利用的精细尺度变化。我们还展示了dBBMM如何用于表征栖息地选择的昼夜模式,并将栖息地利用的精细尺度模式与行为联系起来。我们观察到白尾鹿(Odocoileus virginianus)和郊狼(Canis latrans)的栖息地利用昼夜模式随季节变化。我们发现了白尾鹿选择的季节性模式,并能够将针叶林和农田的利用与郊狼的行为状态联系起来。此外,我们能够量化一只里奥格兰德野火鸡(Meleagris gallopavo intermedia)开始产卵的日期以及它在一天中的什么时候最有可能访问巢穴产卵。量化栖息地利用昼夜模式的能力可能对野生动物的研究和管理具有重要意义。此外,将这些模式与行为联系起来的能力可能有助于栖息地选择机制模型的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验