Silva Inês, Crane Matt, Marshall Benjamin Michael, Strine Colin Thomas
Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhunthien, Bangkok, Thailand.
School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Mov Ecol. 2020 Oct 27;8:43. doi: 10.1186/s40462-020-00229-3. eCollection 2020.
Animal movement expressed through home ranges or space-use can offer insights into spatial and habitat requirements. However, different classes of estimation methods are currently instinctively applied to answer home range, space-use or movement-based research questions regardless of their widely varying outputs, directly impacting conclusions. Recent technological advances in animal tracking (GPS and satellite tags), have enabled new methods to quantify animal space-use and movement pathways, but so far have primarily targeted mammal and avian species.
Most reptile spatial ecology studies only make use of two older home range estimation methods: Minimum Convex Polygons (MCP) and Kernel Density Estimators (KDE), particularly with the Least Squares Cross Validation (LSCV) and reference ( ) bandwidth selection algorithms. These methods are frequently applied to answer space-use and movement-based questions. Reptile movement patterns are unique (e.g. low movement frequency, long stop-over periods), prompting investigation into whether newer movement-based methods -such as dynamic Brownian Bridge Movement Models (dBBMMs)- apply to Very High Frequency (VHF) radio-telemetry tracking data. We simulated movement data for three archetypical reptile species: a highly mobile active hunter, an ambush predator with long-distance moves and long-term sheltering periods, and an ambush predator with short-distance moves and short-term sheltering periods. We compared traditionally used estimators, MCP and KDE, with dBBMMs, across eight feasible VHF field sampling regimes for reptiles, varying from one data point every four daylight hours, to once per month.
Although originally designed for GPS tracking studies, dBBMMs outperformed MCPs and KDE across all tracking regimes in accurately revealing movement pathways, with only KDE LSCV performing comparably at some higher frequency sampling regimes. However, the LSCV algorithm failed to converge with these high-frequency regimes due to high site fidelity, and was unstable across sampling regimes, making its use problematic for species exhibiting long-term sheltering behaviours. We found that dBBMMs minimized the effect of individual variation, maintained low error rates balanced between omission (false negative) and commission (false positive), and performed comparatively well even under low frequency sampling regimes (e.g., once a month).
We recommend dBBMMs as a valuable alternative to MCP and KDE methods for reptile VHF telemetry data, for research questions associated with space-use and movement behaviours within the study period: they work under contemporary tracking protocols and provide more stable estimates. We demonstrate for the first time that dBBMMs can be applied confidently to low-resolution tracking data, while improving comparisons across regimes, individuals, and species.
accompanies this paper at 10.1186/s40462-020-00229-3.
通过活动范围或空间利用所表现出的动物运动,能够为了解空间和栖息地需求提供线索。然而,目前不同类别的估计方法被本能地应用于回答有关活动范围、空间利用或基于运动的研究问题,而忽略了它们差异极大的输出结果,这直接影响了研究结论。动物追踪技术(GPS和卫星标签)的最新进展,使得量化动物空间利用和运动路径的新方法成为可能,但到目前为止,这些方法主要针对的是哺乳动物和鸟类物种。
大多数爬行动物空间生态学研究仅使用两种较老的活动范围估计方法:最小凸多边形法(MCP)和核密度估计法(KDE),特别是采用最小二乘交叉验证(LSCV)和参考( )带宽选择算法。这些方法经常被用于回答基于空间利用和运动的问题。爬行动物的运动模式独特(例如,运动频率低、停留时间长),这促使人们研究更新的基于运动的方法——如动态布朗桥运动模型(dBBMMs)——是否适用于甚高频(VHF)无线电遥测跟踪数据。我们模拟了三种典型爬行动物物种的运动数据:一种高度活跃的移动猎手、一种具有长距离移动和长期庇护期的伏击捕食者,以及一种具有短距离移动和短期庇护期的伏击捕食者。我们在爬行动物的八种可行的VHF野外采样方案中,将传统使用的估计方法MCP和KDE与dBBMMs进行了比较,采样间隔从每四个白天小时一个数据点到每月一次不等。
尽管dBBMMs最初是为GPS跟踪研究设计的,但在准确揭示运动路径方面,dBBMMs在所有跟踪方案中都优于MCPs和KDE,只有KDE LSCV在一些较高频率的采样方案中表现相当。然而,由于地点保真度高,LSCV算法在这些高频方案中无法收敛,并且在不同采样方案中不稳定,这使得它对于表现出长期庇护行为的物种来说使用存在问题。我们发现,dBBMMs将个体差异的影响降至最低,在遗漏(假阴性)和误判(假阳性)之间保持低错误率平衡,并且即使在低频采样方案(例如每月一次)下也表现相对较好。
对于与研究期间内空间利用和运动行为相关的研究问题,我们建议将dBBMMs作为爬行动物VHF遥测数据中MCP和KDE方法的有价值替代方法:它们适用于当代跟踪协议,并提供更稳定的估计。我们首次证明,dBBMMs可以自信地应用于低分辨率跟踪数据,同时改善不同方案、个体和物种之间的比较。
本文的补充信息见10.1186/s40462-020-00229-3。