Suppr超能文献

对野生动物遥测研究中动态相互作用指标的批判性审视。

A critical examination of indices of dynamic interaction for wildlife telemetry studies.

作者信息

Long Jed A, Nelson Trisalyn A, Webb Stephen L, Gee Kenneth L

机构信息

Centre for GeoInformatics, Department of Geography & Sustainable Development, University of St Andrews, St Andrews, Fife, UK.

Spatial Pattern Analysis & Research Laboratory, Department of Geography, University of Victoria, Victoria, BC, Canada.

出版信息

J Anim Ecol. 2014 Sep;83(5):1216-33. doi: 10.1111/1365-2656.12198. Epub 2014 Feb 22.

Abstract

Wildlife scientists continue to be interested in studying ways to quantify how the movements of animals are interdependent - dynamic interaction. While a number of applied studies of dynamic interaction exist, little is known about the comparative effectiveness and applicability of available methods used for quantifying interactions between animals. We highlight the formulation, implementation and interpretation of a suite of eight currently available indices of dynamic interaction. Point- and path-based approaches are contrasted to demonstrate differences between methods and underlying assumptions on telemetry data. Correlated and biased correlated random walks were simulated at a range of sampling resolutions to generate scenarios with dynamic interaction present and absent. We evaluate the effectiveness of each index at identifying different types of interactive behaviour at each sampling resolution. Each index is then applied to an empirical telemetry data set of three white-tailed deer (Odocoileus virginianus) dyads. Results from the simulated data show that three indices of dynamic interaction reliant on statistical testing procedures are susceptible to Type I error, which increases at fine sampling resolutions. In the white-tailed deer examples, a recently developed index for quantifying local-level cohesive movement behaviour (the di index) provides revealing information on the presence of infrequent and varying interactions in space and time. Point-based approaches implemented with finely sampled telemetry data overestimate the presence of interactions (Type I errors). Indices producing only a single global statistic (7 of the 8 indices) are unable to quantify infrequent and varying interactions through time. The quantification of infrequent and variable interactive behaviour has important implications for the spread of disease and the prevalence of social behaviour in wildlife. Guidelines are presented to inform researchers wishing to study dynamic interaction patterns in their own telemetry data sets. Finally, we make our code openly available, in the statistical software R, for computing each index of dynamic interaction presented herein.

摘要

野生动物科学家们一直热衷于研究如何量化动物运动的相互依存关系——动态交互作用。虽然已有一些关于动态交互作用的应用研究,但对于用于量化动物间交互作用的现有方法的比较有效性和适用性却知之甚少。我们着重介绍了一套目前可用的八个动态交互作用指数的制定、实施和解释。对比了基于点和基于路径的方法,以展示不同方法之间的差异以及对遥测数据的潜在假设。在一系列采样分辨率下模拟了相关和有偏相关随机游走,以生成存在和不存在动态交互作用的场景。我们评估了每个指数在每种采样分辨率下识别不同类型交互行为的有效性。然后将每个指数应用于三个白尾鹿(弗吉尼亚鹿)二元组的实证遥测数据集。模拟数据的结果表明,依赖统计检验程序的三个动态交互作用指数容易出现I型错误,这种错误在精细采样分辨率下会增加。在白尾鹿的例子中,最近开发的用于量化局部层面凝聚运动行为的指数(di指数)提供了关于在空间和时间上不频繁且变化的交互作用存在的有启发性信息。基于精细采样遥测数据实施的基于点的方法高估了交互作用的存在(I型错误)。仅产生单个全局统计量的指数(8个指数中的7个)无法量化随时间不频繁且变化的交互作用。不频繁且可变的交互行为的量化对于野生动物疾病传播和社会行为的流行具有重要意义。本文给出了指导方针,以帮助希望在自己的遥测数据集中研究动态交互作用模式的研究人员。最后,我们在统计软件R中公开了代码,用于计算本文中介绍的每个动态交互作用指数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验