Suppr超能文献

评论 A. Ben-Shaul 的来信:“病毒衣壳中 DNA 的熵、能量和弯曲”。

Comment on the letter by A. Ben-Shaul: "entropy, energy, and bending of DNA in viral capsids".

机构信息

School of Biology, Georgia Institute of Technology, Atlanta, Georgia.

出版信息

Biophys J. 2014 Jan 21;106(2):489-92. doi: 10.1016/j.bpj.2013.12.012.

Abstract

The conformational entropic penalty associated with packaging double-stranded DNA into viral capsids remains an issue of contention. So far, models based on a continuum approximation for DNA have either left the question unexamined, or they have assumed that the entropic penalty is negligible, following an early analysis by Riemer and Bloomfield. In contrast, molecular-dynamics (MD) simulations using bead-and-spring models consistently show a large penalty. A recent letter from Ben-Shaul attempts to reconcile the differences. While the letter makes some valid points, the issue of how to include conformational entropy in the continuum models remains unresolved. In this Comment, I show that the free energy decomposition from continuum models could be brought into line with the decomposition from the MD simulations with two adjustments. First, the entropy from Flory-Huggins theory should be replaced by the estimate of the entropic penalty given in Ben-Shaul's letter, which corresponds closely to that from the MD simulations. Second, the DNA-DNA repulsions are well described by the empirical relationship given by the Cal Tech group, but the strength of these should be reduced by about half, using parameters based on the Rau-Parsegian experiments, rather than treating them as "fitting parameters (tuned) to fit the data from (single molecule pulling) experiments."

摘要

将双链 DNA 包装到病毒衣壳中所涉及的构象熵罚仍然存在争议。到目前为止,基于 DNA 连续体近似的模型要么没有检查这个问题,要么遵循 Riemer 和 Bloomfield 的早期分析,假设熵罚可以忽略不计。相比之下,使用珠簧模型的分子动力学 (MD) 模拟一致显示出较大的罚分。Ben-Shaul 的一封最近的来信试图调和这些差异。虽然这封信提出了一些合理的观点,但如何在连续体模型中包含构象熵的问题仍然没有解决。在这篇评论中,我表明,可以通过两种调整,使连续体模型的自由能分解与 MD 模拟的分解保持一致。首先,应该用 Ben-Shaul 信中给出的构象熵罚分估计值替换 Flory-Huggins 理论的熵,这与 MD 模拟非常接近。其次,DNA-DNA 斥力可以很好地用 Cal Tech 小组给出的经验关系来描述,但应该将其强度降低约一半,使用基于 Rau-Parsegian 实验的参数,而不是将其视为“拟合参数(经过调整以适应来自(单分子拉伸)实验的数据)”。

相似文献

2
Entropy, energy, and bending of DNA in viral capsids.病毒衣壳中 DNA 的熵、能量和弯曲。
Biophys J. 2013 May 21;104(10):L15-7. doi: 10.1016/j.bpj.2013.04.006.
6
DNA organization and thermodynamics during viral packing.病毒包装过程中的DNA组织与热力学
Biophys J. 2007 Oct 15;93(8):2861-9. doi: 10.1529/biophysj.106.094771. Epub 2007 Jun 15.
7
Packaging double-helical DNA into viral capsids.将双螺旋DNA包装进病毒衣壳。
Biopolymers. 2004 Feb 15;73(3):348-55. doi: 10.1002/bip.10529.
9
Helical packaging of semiflexible polymers in bacteriophages.噬菌体中半柔性聚合物的螺旋包装。
Eur Biophys J. 2004 Oct;33(6):497-505. doi: 10.1007/s00249-003-0385-9. Epub 2004 Feb 26.

本文引用的文献

1
Entropy, energy, and bending of DNA in viral capsids.病毒衣壳中 DNA 的熵、能量和弯曲。
Biophys J. 2013 May 21;104(10):L15-7. doi: 10.1016/j.bpj.2013.04.006.
2
The entropic cost of polymer confinement.聚合物受限的熵代价。
J Phys Chem B. 2012 Sep 6;116(35):10928-34. doi: 10.1021/jp302807r. Epub 2012 Aug 27.
3
Computational approaches to modeling viral structure and assembly.病毒结构与组装建模的计算方法。
Methods Enzymol. 2011;487:513-43. doi: 10.1016/B978-0-12-381270-4.00018-4.
4
Viral assembly: a molecular modeling perspective.病毒组装:分子建模视角。
Phys Chem Chem Phys. 2009 Dec 7;11(45):10553-64. doi: 10.1039/b912884k. Epub 2009 Oct 19.
6
Virology. Pressurized viruses.病毒学。加压病毒。
Science. 2009 Mar 27;323(5922):1682-3. doi: 10.1126/science.1170645.
7
Physical chemistry of DNA viruses.
Annu Rev Phys Chem. 2009;60:367-83. doi: 10.1146/annurev.physchem.59.032607.093728.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验