García-García Jorge D, Girard Lourdes, Hernández Georgina, Saavedra Emma, Pardo Juan P, Rodríguez-Zavala José S, Encalada Rusely, Reyes-Prieto Adrián, Mendoza-Cózatl David G, Moreno-Sánchez Rafael
Departamento de Bioquímica, Instituto Nacional de Cardiología, Juan Badiano No. 1, Sección XVI, Tlalpan, México D.F. 14080, México.
Metallomics. 2014 Mar;6(3):604-16. doi: 10.1039/c3mt00313b. Epub 2014 Jan 24.
The phytochelatin synthase from photosynthetic Euglena gracilis (EgPCS) was analyzed at the transcriptional, kinetic, functional, and phylogenetic levels. Recombinant EgPCS was a monomeric enzyme able to synthesize, in the presence of Zn(2+) or Cd(2+), phytochelatin2-phytochelatin4 (PC2-PC4) using GSH or S-methyl-GS (S-methyl-glutathione), but not γ-glutamylcysteine or PC2 as a substrate. Kinetic analysis of EgPCS firmly established a two-substrate reaction mechanism for PC2 synthesis with Km values of 14-22 mM for GSH and 1.6-2.5 μM for metal-bis-glutathionate (Me-GS2). EgPCS showed the highest Vmax and catalytic efficiency with Zn-(GS)2, and was inactivated by peroxides. The EgPCS N-terminal domain showed high similarity to that of other PCSases, in which the typical catalytic core (Cys-70, His-179 and Asp-197) was identified. In contrast, the C-terminal domain showed no similarity to other PCSases. An EgPCS mutant comprising only the N-terminal 235 amino acid residues was inactive, suggesting that the C-terminal domain is essential for activity/stability. EgPCS transcription in Euglena cells was not modified by Cd(2+), whereas its heterologous expression in ycf-1 yeast cells provided resistance to Cd(2+) stress. Phylogenetic analysis of the N-terminal domain showed that EgPCS is distant from plants and other photosynthetic organisms, suggesting that it evolved independently. Although EgPCS showed typical features of PCSases (constitutive expression; conserved N-terminal domain; kinetic mechanism), it also exhibited distinct characteristics such as preference for Zn-(GS)2 over Cd-(GS)2 as a co-substrate, a monomeric structure, and ability to solely synthesize short-chain PCs, which may be involved in conferring enhanced heavy-metal resistance.
对光合生物纤细裸藻(EgPCS)中的植物螯合肽合酶进行了转录、动力学、功能和系统发育水平的分析。重组EgPCS是一种单体酶,在Zn(2+)或Cd(2+)存在的情况下,能够使用谷胱甘肽(GSH)或S-甲基谷胱甘肽(S-methyl-GS)合成植物螯合肽2-植物螯合肽4(PC2-PC4),但不能使用γ-谷氨酰半胱氨酸或PC2作为底物。EgPCS的动力学分析确定了PC2合成的双底物反应机制,GSH的Km值为14-22 mM,金属双谷胱甘肽(Me-GS2)的Km值为1.6-2.5 μM。EgPCS对Zn-(GS)2表现出最高的Vmax和催化效率,并被过氧化物灭活。EgPCS的N端结构域与其他植物螯合肽合酶的结构域具有高度相似性,其中鉴定出了典型的催化核心(Cys-70、His-179和Asp-197)。相比之下,C端结构域与其他植物螯合肽合酶没有相似性。仅包含N端235个氨基酸残基的EgPCS突变体无活性,这表明C端结构域对活性/稳定性至关重要。纤细裸藻细胞中的EgPCS转录不受Cd(2+)的影响,而其在ycf-1酵母细胞中的异源表达赋予了对Cd(2+)胁迫的抗性。对N端结构域的系统发育分析表明,EgPCS与植物和其他光合生物的亲缘关系较远,这表明它是独立进化的。虽然EgPCS表现出植物螯合肽合酶的典型特征(组成型表达;保守的N端结构域;动力学机制),但它也表现出不同的特征,例如作为共底物时对Zn-(GS)2的偏好超过Cd-(GS)2、单体结构以及仅合成短链植物螯合肽的能力,这些特征可能有助于增强重金属抗性。