Department of Genetics, Osmania University, Hyderabad, 500007, India.
Interdiscip Sci. 2014 Mar;6(1):32-9. doi: 10.1007/s12539-014-0190-4. Epub 2014 Jan 28.
Non-synonymous single nucleotide changes (nSNC) are coding variants that introduce amino acid changes in their corresponding proteins. They can affect protein function; they are believed to have the largest impact on human health compared with SNCs in other regions of the genome. Such a sequence alteration directly affects their structural stability through conformational changes. Presence of these conformational changes near catalytic site or active site may alter protein function and as a consequence receptor-ligand complex interactions. The present investigation includes assessment of human podocin mutations (G92C, P118L, R138Q, and D160G) on its structure. Podocin is an important glomerular integral membrane protein thought to play a key role in steroid resistant nephrotic syndrome. Podocin has a hairpin like structure with 383 amino acids, it is an integral protein homologous to stomatin, and acts as a molecular link in a stretch-sensitive system. We modeled 3D structure of podocin by means of Modeller and validated via PROCHECK to get a Ramachandran plot (88.5% in most favored region), main chain, side chain, bad contacts, gauche and pooled standard deviation. Further, a protein engineering tool Triton was used to induce mutagenesis corresponding to four variants G92C, P118L, R138Q and D160G in the wild type. Perusal of energies of wild and mutated type of podocin structures confirmed that mutated structures were thermodynamically more stable than wild type and therefore biological events favored synthesis of mutated forms of podocin than wild type. As a conclusive part, two mutations G92C (-8179.272 kJ/mol) and P118L (-8136.685 kJ/mol) are more stable and probable to take place in podocin structure over wild podocin structure (-8105.622 kJ/mol). Though there is lesser difference in mutated and wild type (approximately, 74 and 35 kJ/mol), it may play a crucial role in deciding why mutations are favored and occur at the genetic level.
非 synonymous单核苷酸变化(nSNC)是指在其相应的蛋白质中引入氨基酸变化的编码变体。它们会影响蛋白质功能;与基因组其他区域的 SNC 相比,它们被认为对人类健康的影响最大。这种序列改变会通过构象变化直接影响其结构稳定性。这些构象变化存在于催化部位或活性部位附近,可能会改变蛋白质功能,并因此改变受体-配体复合物相互作用。本研究包括评估人类足细胞突变(G92C、P118L、R138Q 和 D160G)对其结构的影响。足细胞是一种重要的肾小球整合膜蛋白,被认为在类固醇耐药性肾病综合征中发挥关键作用。足细胞具有发夹样结构,由 383 个氨基酸组成,是与 stomatin 同源的整合蛋白,作为伸展敏感系统中的分子连接物。我们使用 Modeller 对足细胞的 3D 结构进行建模,并通过 PROCHECK 进行验证,以获得 Ramachandran 图(最有利区域的 88.5%)、主链、侧链、不良接触、 gauche 和聚合标准偏差。此外,使用蛋白工程工具 Triton 诱导对应于野生型中四个变体 G92C、P118L、R138Q 和 D160G 的突变。对野生型和突变型足细胞结构的能量进行研究,证实突变型结构在热力学上比野生型更稳定,因此生物事件有利于突变型足细胞的合成而不是野生型。作为结论部分,两个突变 G92C(-8179.272 kJ/mol)和 P118L(-8136.685 kJ/mol)比野生型足细胞结构(-8105.622 kJ/mol)更稳定,更有可能发生在足细胞结构中。尽管突变型和野生型之间的差异较小(约为 74 和 35 kJ/mol),但它可能在决定为什么突变在遗传水平上更受青睐和发生方面发挥关键作用。