Suppr超能文献

通过深度学习开发的用于治疗宫颈癌的 VEGFR1、VEGFR2 和 VEGFR3 的潜在抑制剂。

Potential inhibitors of VEGFR1, VEGFR2, and VEGFR3 developed through Deep Learning for the treatment of Cervical Cancer.

机构信息

In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India.

Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India.

出版信息

Sci Rep. 2024 Jun 10;14(1):13251. doi: 10.1038/s41598-024-63762-w.

Abstract

Cervical cancer stands as a prevalent gynaecologic malignancy affecting women globally, often linked to persistent human papillomavirus infection. Biomarkers associated with cervical cancer, including VEGF-A, VEGF-B, VEGF-C, VEGF-D, and VEGF-E, show upregulation and are linked to angiogenesis and lymphangiogenesis. This research aims to employ in-silico methods to target tyrosine kinase receptor proteins-VEGFR-1, VEGFR-2, and VEGFR-3, and identify novel inhibitors for Vascular Endothelial Growth Factors receptors (VEGFRs). A comprehensive literary study was conducted which identified 26 established inhibitors for VEGFR-1, VEGFR-2, and VEGFR-3 receptor proteins. Compounds with high-affinity scores, including PubChem ID-25102847, 369976, and 208908 were chosen from pre-existing compounds for creating Deep Learning-based models. RD-Kit, a Deep learning algorithm, was used to generate 43 million compounds for VEGFR-1, VEGFR-2, and VEGFR-3 targets. Molecular docking studies were conducted on the top 10 molecules for each target to validate the receptor-ligand binding affinity. The results of Molecular Docking indicated that PubChem IDs-71465,645 and 11152946 exhibited strong affinity, designating them as the most efficient molecules. To further investigate their potential, a Molecular Dynamics Simulation was performed to assess conformational stability, and a pharmacophore analysis was also conducted for indoctrinating interactions.

摘要

宫颈癌是一种常见的妇科恶性肿瘤,影响着全球的女性,通常与持续性人乳头瘤病毒感染有关。与宫颈癌相关的生物标志物,包括 VEGF-A、VEGF-B、VEGF-C、VEGF-D 和 VEGF-E,表现出上调,并与血管生成和淋巴管生成有关。本研究旨在采用计算机模拟方法靶向酪氨酸激酶受体蛋白-VEGFR-1、VEGFR-2 和 VEGFR-3,并鉴定血管内皮生长因子受体(VEGFR)的新型抑制剂。进行了全面的文献研究,确定了 26 种已建立的 VEGFR-1、VEGFR-2 和 VEGFR-3 受体蛋白抑制剂。从现有化合物中选择具有高亲和力评分的化合物,包括 PubChem ID-25102847、369976 和 208908,用于创建基于深度学习的模型。RD-Kit 是一种深度学习算法,用于为 VEGFR-1、VEGFR-2 和 VEGFR-3 靶标生成 4300 万个化合物。对每个靶标排名前 10 的分子进行分子对接研究,以验证受体-配体结合亲和力。分子对接结果表明,PubChem IDs-71465、645 和 11152946 表现出很强的亲和力,将它们指定为最有效的分子。为了进一步研究它们的潜力,进行了分子动力学模拟以评估构象稳定性,还进行了药效团分析以深入了解相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/730f/11164920/c5d39af7d2a2/41598_2024_63762_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验