Parker Jon, Epstein Joshua M
The Johns Hopkins University.
ACM Trans Model Comput Simul. 2011 Dec;22(1):2. doi: 10.1145/2043635.2043637.
The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM's speed and scalability.
本文介绍了全球尺度智能体模型(GSAM)。GSAM是一个用于基于智能体的流行病建模的高性能分布式平台,能够模拟数十亿智能体群体中的疾病爆发。它在规模、速度以及Java的使用方面都是前所未有的。文中提出了针对大规模基于智能体模型分布式所固有的多重挑战的解决方案。通信、同步和内存使用是详细讨论的主题。内存使用的讨论是特定于Java的。然而,通信和同步的讨论具有广泛的适用性。我们提供了基准测试来说明GSAM的速度和可扩展性。