Suppr超能文献

用于模拟流行病时空传播的小世界网络与多智能体系统的集成。

Integration of small world networks with multi-agent systems for simulating epidemic spatiotemporal transmission.

作者信息

Liu Tao, Li Xia, Liu XiaoPing

机构信息

School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275 China.

出版信息

Chin Sci Bull. 2010;55(13):1285-1293. doi: 10.1007/s11434-009-0623-3. Epub 2010 May 6.

Abstract

This study proposes an integrated model based on small world network (SWN) and multi-agent system (MAS) for simulating epidemic spatiotemporal transmission. In this model, MAS represents the process of spatiotemporal interactions among individuals, and SWN describes the social relation network among agents. The model is composed of agent attribute definitions, agent movement rules, neighborhoods, construction of social relation network among agents and state transition rules. The construction of social relation network and agent state transition rules is essential for implementing the proposed model. The decay effects of infection "memory", distance and social relation between agents are introduced into the model, which are unavailable in traditional models. The proposed model is used to simulate the transmission process of flu in Guangzhou City based on the swarm software platform. The integration model has better performance than the traditional SEIR model and the pure MAS based epidemic model. This model has been applied to the simulation of the transmission of epidemics in real geographical environment. The simulation can provide useful information for the understanding, prediction and control of the transmission of epidemics.

摘要

本研究提出了一种基于小世界网络(SWN)和多智能体系统(MAS)的集成模型,用于模拟流行病的时空传播。在该模型中,MAS代表个体间的时空交互过程,而SWN描述智能体之间的社会关系网络。该模型由智能体属性定义、智能体移动规则、邻域、智能体之间社会关系网络的构建以及状态转换规则组成。社会关系网络的构建和智能体状态转换规则对于实现所提出的模型至关重要。该模型引入了感染“记忆”、智能体之间的距离和社会关系的衰减效应,而这些在传统模型中是不存在的。基于群体软件平台,所提出的模型用于模拟广州市流感的传播过程。该集成模型比传统的SEIR模型和基于纯MAS的流行病模型具有更好的性能。该模型已应用于实际地理环境中流行病传播的模拟。该模拟可为理解、预测和控制流行病传播提供有用信息。

相似文献

9
Multi-agent simulation model for the evaluation of COVID-19 transmission.用于评估 COVID-19 传播的多主体模拟模型。
Comput Biol Med. 2021 Sep;136:104645. doi: 10.1016/j.compbiomed.2021.104645. Epub 2021 Jul 13.

本文引用的文献

2
Stochastic dynamic model of SARS spreading.SARS传播的随机动力学模型
Chin Sci Bull. 2003;48(13):1287-1292. doi: 10.1007/BF03184164.
3
Modelling the effect of urbanization on the transmission of an infectious disease.模拟城市化对传染病传播的影响。
Math Biosci. 2008 Jan;211(1):166-85. doi: 10.1016/j.mbs.2007.10.007. Epub 2007 Nov 4.
5
Universal behavior in a generalized model of contagion.传染广义模型中的普遍行为。
Phys Rev Lett. 2004 May 28;92(21):218701. doi: 10.1103/PhysRevLett.92.218701. Epub 2004 May 24.
6
Epidemics and percolation in small-world networks.小世界网络中的流行病与渗流
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 May;61(5 Pt B):5678-82. doi: 10.1103/physreve.61.5678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验