Eubank Stephen, Guclu Hasan, Kumar V S Anil, Marathe Madhav V, Srinivasan Aravind, Toroczkai Zoltán, Wang Nan
Basic and Applied Simulation Science Group, Los Alamos National Laboratory, MS M997, Los Alamos, New Mexico 87545, USA.
Nature. 2004 May 13;429(6988):180-4. doi: 10.1038/nature02541.
Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
大多数疾病传播的数学模型使用基于均匀混合假设的微分方程或接触过程的特设模型。在这里,我们探索使用动态二分图来模拟个体在特定地点之间移动所产生的物理接触模式。这些图是由基于实际人口普查、土地利用和人口流动数据构建的大规模个体城市交通模拟生成的。我们发现,人与人之间的接触网络是一个具有定义明确的度分布尺度的强连通小世界类图。然而,地点图是无标度的,这使得通过在地点网络的枢纽中放置传感器能够高效地检测疫情爆发。在这个大规模模拟框架内,我们接着分析了几种针对天花传播提出的缓解策略的相对优点。我们的结果表明,通过有针对性的疫苗接种与早期检测相结合的策略,无需对人群进行大规模疫苗接种,就可以控制疫情爆发。