Suppr超能文献

拟南芥中的质外体扩散屏障

Apoplastic diffusion barriers in Arabidopsis.

作者信息

Nawrath Christiane, Schreiber Lukas, Franke Rochus Benni, Geldner Niko, Reina-Pinto José J, Kunst Ljerka

机构信息

University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland.

University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany.

出版信息

Arabidopsis Book. 2013 Dec 27;11:e0167. doi: 10.1199/tab.0167.

Abstract

During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.

摘要

在拟南芥和其他陆地植物的发育过程中,扩散屏障在多种植物器官内特化组织的质外体中形成。虽然表皮的角质层是地上部分的主要扩散屏障,但内皮层和周皮的凯氏带和栓质化层是根部的扩散屏障。不同类别的分子以器官和组织特异性的方式促成细胞外扩散屏障的形成。角质和蜡质是角质层的主要成分,木质素形成早期凯氏带,栓质则沉积在II期内皮层和周皮中。本文讨论了我们目前对植物扩散屏障的化学结构、超微结构和生理功能之间关系的理解现状。还介绍了扩散屏障成分合成的具体方面以及可用于评估屏障功能和重要屏障特性的方案。

相似文献

1
Apoplastic diffusion barriers in Arabidopsis.
Arabidopsis Book. 2013 Dec 27;11:e0167. doi: 10.1199/tab.0167.
2
Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.
Curr Biol. 2017 Mar 6;27(5):758-765. doi: 10.1016/j.cub.2017.01.030. Epub 2017 Feb 23.
3
Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin.
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10101-6. doi: 10.1073/pnas.1205726109. Epub 2012 Jun 4.
4
The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers.
Plant Signal Behav. 2020 Mar 3;15(3):1724465. doi: 10.1080/15592324.2020.1724465. Epub 2020 Feb 6.
5
Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes.
Plant J. 2019 Oct;100(2):221-236. doi: 10.1111/tpj.14459. Epub 2019 Sep 3.
6
Physiological roles of Casparian strips and suberin in the transport of water and solutes.
New Phytol. 2021 Dec;232(6):2295-2307. doi: 10.1111/nph.17765. Epub 2021 Oct 21.
7
SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis.
Plant J. 2020 May;102(3):431-447. doi: 10.1111/tpj.14711. Epub 2020 Feb 24.
8
Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin.
Phytochemistry. 2005 Nov;66(22):2643-58. doi: 10.1016/j.phytochem.2005.09.027. Epub 2005 Nov 9.
9
Tissue-Autonomous Phenylpropanoid Production Is Essential for Establishment of Root Barriers.
Curr Biol. 2021 Mar 8;31(5):965-977.e5. doi: 10.1016/j.cub.2020.11.070. Epub 2021 Feb 1.
10
Building and breaking of a barrier: Suberin plasticity and function in the endodermis.
Curr Opin Plant Biol. 2021 Dec;64:102153. doi: 10.1016/j.pbi.2021.102153. Epub 2021 Nov 30.

引用本文的文献

2
Timing Is Everything: The Metabolic Partitioning of Suberin-Destined Carbon.
Plants (Basel). 2025 May 10;14(10):1433. doi: 10.3390/plants14101433.
3
Making a new epidermis after abscission.
Nat Plants. 2025 Apr;11(4):674-675. doi: 10.1038/s41477-025-01951-9.
4
Identification and Analysis of Cuticular Wax Biosynthesis Related Genes in Under NaCl Treatment.
Int J Mol Sci. 2025 Mar 14;26(6):2632. doi: 10.3390/ijms26062632.
5
Arabidopsis GH3.10 conjugates jasmonates.
Plant Biol (Stuttg). 2025 Jun;27(4):476-491. doi: 10.1111/plb.70001. Epub 2025 Mar 17.
6
Barriers and carriers for transition metal homeostasis in plants.
Plant Commun. 2025 Feb 10;6(2):101235. doi: 10.1016/j.xplc.2024.101235. Epub 2024 Dec 26.
7
Building barriers: The role of MYB genes in rice root adaptation.
Plant Cell. 2024 Dec 23;37(1). doi: 10.1093/plcell/koae284.
9
An elastic proteinaceous envelope encapsulates the early Arabidopsis embryo.
Development. 2023 Nov 15;150(22). doi: 10.1242/dev.201943. Epub 2023 Nov 9.
10
Genome-Wide Identification and Expression Pattern Analysis of Dirigent Members in the Genus .
Int J Mol Sci. 2023 Apr 13;24(8):7189. doi: 10.3390/ijms24087189.

本文引用的文献

3
A mechanism for localized lignin deposition in the endodermis.
Cell. 2013 Apr 11;153(2):402-12. doi: 10.1016/j.cell.2013.02.045. Epub 2013 Mar 28.
4
Acyl-lipid metabolism.
Arabidopsis Book. 2013;11:e0161. doi: 10.1199/tab.0161. Epub 2013 Jan 29.
8
Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes.
Front Plant Sci. 2012 Oct 8;3:224. doi: 10.3389/fpls.2012.00224. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验