Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland.
PLoS Biol. 2014 Jan;12(1):e1001773. doi: 10.1371/journal.pbio.1001773. Epub 2014 Jan 21.
The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particular the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory mechanism used to pattern tetrapod limbs may predate the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory landscapes triggered transcription in proximal rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as tetrapod novelties through genetic retrofitting of preexisting regulatory landscapes. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies.
从鱼类的鳍演化而来的四足动物的四肢使脊椎动物能够征服陆地,因此这代表了进化过程中的一个关键步骤。尽管利用了比较基因表达分析,但这一转变的关键方面仍然存在争议,特别是指数字的起源。Hoxa 和 Hoxd 基因对于不同肢体节段的特化是必不可少的,其功能的缺失会导致附肢的严重截断。在这里,我们表明,小鼠 Hoxa 基因在近端和远端肢体中的选择性转录与双模态高级染色质结构有关,类似于报道的 Hoxd 基因,从而揭示了两个基因簇在肢体发育过程中实施的通用调控策略。我们在鱼类胚胎中发现了相同的双模态染色质结构,表明用于塑造四足动物肢体的调控机制可能早于鱼类和四足动物的分化。然而,当在小鼠中进行评估时,两种鱼类调控景观都在近端而不是远端肢体区域触发转录,支持了一种进化情景,即数字作为四足动物的新特征,是通过对现有调控景观的遗传改造而产生的。我们讨论了将调控回路而不是表达模式视为定义进化同源特征的重要参数的可能性。
Proc Natl Acad Sci U S A. 2011-7-15
Nature. 2016-9-8
Dev Biol. 2019-8-22
PLoS Biol. 2014-1
Nat Cell Biol. 2025-9-8
Genome Biol Evol. 2025-5-30
MedComm (2020). 2023-7-8
Development. 2023-1-1
Dev Dyn. 2013-9-2
Integr Comp Biol. 2013-4-26
Trends Genet. 2013-2-21
J Anat. 2012-3-12
Dev Cell. 2012-12-11
Nat Methods. 2012-9-9
Development. 2012-7-12