Suppr超能文献

具有多个时变时滞的递归神经网络的指数输入状态稳定性。

Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays.

机构信息

Department of Mathematics, Key Laboratory for Optimization and Control of Ministry of Education, Chongqing Normal University, Chongqing, 400047 China.

Department of Mathematics, Chongqing Normal University, Chongqing, 400047 China.

出版信息

Cogn Neurodyn. 2014 Feb;8(1):47-54. doi: 10.1007/s11571-013-9258-9. Epub 2013 Jun 15.

Abstract

In this paper, input-to-state stability problems for a class of recurrent neural networks model with multiple time-varying delays are concerned with. By utilizing the Lyapunov-Krasovskii functional method and linear matrix inequalities techniques, some sufficient conditions ensuring the exponential input-to-state stability of delayed network systems are firstly obtained. Two numerical examples and its simulations are given to illustrate the efficiency of the derived results.

摘要

本文研究了一类具有多个时变时滞的递归神经网络模型的输入状态稳定性问题。利用李雅普诺夫-克拉索夫斯基泛函方法和线性矩阵不等式技术,首先得到了保证时滞网络系统指数输入状态稳定性的一些充分条件。给出了两个数值实例及其仿真结果,以验证所得结果的有效性。

相似文献

4
Global exponential periodicity and stability of recurrent neural networks with multi-proportional delays.
ISA Trans. 2016 Jan;60:89-95. doi: 10.1016/j.isatra.2015.11.008. Epub 2015 Nov 27.
10
Improved Stability Criterion for Recurrent Neural Networks With Time-Varying Delays.具有时变延迟的递归神经网络的改进稳定性准则
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5756-5760. doi: 10.1109/TNNLS.2018.2795546. Epub 2018 Feb 12.

本文引用的文献

3
Robust state estimation for neural networks with discontinuous activations.具有不连续激活函数的神经网络的鲁棒状态估计
IEEE Trans Syst Man Cybern B Cybern. 2010 Dec;40(6):1425-37. doi: 10.1109/TSMCB.2009.2039478. Epub 2010 Feb 17.
7
Computing with neural circuits: a model.利用神经回路进行计算:一种模型。
Science. 1986 Aug 8;233(4764):625-33. doi: 10.1126/science.3755256.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验