Suppr超能文献

带有约束条件的线性混合效应模型及其应用。

Linear mixed effects models under inequality constraints with applications.

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America.

Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America.

出版信息

PLoS One. 2014 Jan 21;9(1):e84778. doi: 10.1371/journal.pone.0084778. eCollection 2014.

Abstract

Constraints arise naturally in many scientific experiments/studies such as in, epidemiology, biology, toxicology, etc. and often researchers ignore such information when analyzing their data and use standard methods such as the analysis of variance (ANOVA). Such methods may not only result in a loss of power and efficiency in costs of experimentation but also may result poor interpretation of the data. In this paper we discuss constrained statistical inference in the context of linear mixed effects models that arise naturally in many applications, such as in repeated measurements designs, familial studies and others. We introduce a novel methodology that is broadly applicable for a variety of constraints on the parameters. Since in many applications sample sizes are small and/or the data are not necessarily normally distributed and furthermore error variances need not be homoscedastic (i.e. heterogeneity in the data) we use an empirical best linear unbiased predictor (EBLUP) type residual based bootstrap methodology for deriving critical values of the proposed test. Our simulation studies suggest that the proposed procedure maintains the desired nominal Type I error while competing well with other tests in terms of power. We illustrate the proposed methodology by re-analyzing a clinical trial data on blood mercury level. The methodology introduced in this paper can be easily extended to other settings such as nonlinear and generalized regression models.

摘要

在许多科学实验/研究中,如流行病学、生物学、毒理学等,都会自然地出现约束条件。然而,研究人员在分析数据时常常忽略这些信息,而使用标准方法,如方差分析(ANOVA)。这些方法不仅可能导致实验成本的功效和效率损失,还可能导致对数据的解释不佳。在本文中,我们讨论了在许多应用中自然出现的线性混合效应模型中受约束的统计推断,例如在重复测量设计、家族研究等中。我们引入了一种新的方法,该方法广泛适用于对参数的各种约束。由于在许多应用中,样本量较小,并且/或者数据不一定服从正态分布,此外误差方差不一定是同方差的(即数据中的异质性),因此我们使用基于经验最佳线性无偏预测(EBLUP)类型的残差的自助法来导出所提出的检验的临界值。我们的模拟研究表明,所提出的程序在保持期望的名义第一类错误率的同时,在功效方面与其他检验方法相比具有竞争力。我们通过重新分析血液汞水平的临床试验数据来说明所提出的方法。本文中介绍的方法可以很容易地扩展到其他设置,如非线性和广义回归模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验