Suppr超能文献

通过在一个完全可处理的数学模型中耦合细胞内pH动态变化的分子机制来进行捕捉。

Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

作者信息

Bouret Yann, Argentina Médéric, Counillon Laurent

机构信息

Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, Nice, France.

Université Nice Sophia Antipolis, CNRS, INLN, UMR 7335, Valbonne, France ; Institut Universitaire de France (IUF), Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Paris, France.

出版信息

PLoS One. 2014 Jan 17;9(1):e85449. doi: 10.1371/journal.pone.0085449. eCollection 2014.

Abstract

We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

摘要

我们描述了一种用于细胞内pH值的完全可处理的数学模型的构建。这项工作基于将描述泵、转运体和化学反应分子机制的动力学方程耦合起来,这些机制决定了真核细胞中的这一参数。因此,我们的系统还能计算膜电位和胞质离子组成。这样一个模型需要开发一种新颖的代数方法,将慢弛豫过程的微分方程与快速化学反应的稳态方程耦合起来。与基于拟合曲线和特设常数的经典启发式方法相比,这带来了显著的改进。该模型在数学上是自洽的,首次允许建立稳态pH值的解析解以及pH调节的简化微分方程。由于其模块化结构,它可以整合任何直接或间接影响pH值的额外机制。此外,它为广泛观察到的生物现象(如调节回路中的过冲)提供了数学解释。最后,我们不是纳入有限的一组实验结果来拟合我们的模型,而是展示了与许多不同细胞系统中不同研究小组收集的大量细胞内pH实验测量结果极其一致的数值计算示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b0/3894979/f721b1ff58f5/pone.0085449.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验